neuralworm commited on
Commit
7c4c3d0
·
verified ·
1 Parent(s): d6b73ac

Update cognitive_mapping_probe/auto_experiment.py

Browse files
cognitive_mapping_probe/auto_experiment.py CHANGED
@@ -10,7 +10,7 @@ from .utils import dbg
10
 
11
  def get_curated_experiments() -> Dict[str, List[Dict]]:
12
  """Definiert die vordefinierten, wissenschaftlichen Experiment-Protokolle."""
13
-
14
  CALMNESS_CONCEPT = "calmness, serenity, stability, coherence"
15
  CHAOS_CONCEPT = "chaos, disorder, entropy, noise"
16
  STABLE_PROMPT = "identity_self_analysis"
@@ -113,7 +113,7 @@ def run_auto_suite(
113
  llm = get_or_load_model(model_id, seed)
114
  therapeutic_concept = "calmness, serenity, stability, coherence"
115
  therapeutic_strength = 2.0
116
-
117
  spec1 = protocol[0]
118
  progress_callback(0.1, desc="Step 1")
119
  intervention_vector = get_concept_vector(llm, therapeutic_concept)
@@ -123,7 +123,7 @@ def run_auto_suite(
123
  progress_callback=progress_callback, llm_instance=llm, injection_vector_cache=intervention_vector
124
  )
125
  all_results[spec1['label']] = results1
126
-
127
  spec2 = protocol[1]
128
  progress_callback(0.6, desc="Step 2")
129
  results2 = run_seismic_analysis(
@@ -132,14 +132,14 @@ def run_auto_suite(
132
  progress_callback=progress_callback, llm_instance=llm
133
  )
134
  all_results[spec2['label']] = results2
135
-
136
  for label, results in all_results.items():
137
  stats = results.get("stats", {})
138
  summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta"), "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")})
139
  deltas = results.get("state_deltas", [])
140
  df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
141
  plot_data_frames.append(df)
142
-
143
  else:
144
  probe_type = protocol[0].get("probe_type", "seismic")
145
 
@@ -147,9 +147,9 @@ def run_auto_suite(
147
  run_spec = protocol[0]
148
  label = run_spec["label"]
149
  dbg(f"--- Running Mechanistic Probe: '{label}' ---")
150
-
151
  llm = get_or_load_model(model_id, seed)
152
-
153
  results = run_cogitation_loop(
154
  llm=llm, prompt_type=run_spec["prompt_type"],
155
  num_steps=num_steps, temperature=0.1, record_attentions=True
@@ -159,15 +159,15 @@ def run_auto_suite(
159
  deltas = results.get("state_deltas", [])
160
  entropies = results.get("attention_entropies", [])
161
  min_len = min(len(deltas), len(entropies))
162
-
163
  df = pd.DataFrame({
164
  "Step": range(min_len), "State Delta": deltas[:min_len], "Attention Entropy": entropies[:min_len]
165
  })
166
-
167
  summary_df = df.drop(columns='Step').agg(['mean', 'std', 'max']).reset_index().rename(columns={'index':'Statistic'})
168
  plot_df = df.melt(id_vars=['Step'], value_vars=['State Delta', 'Attention Entropy'], var_name='Metric', value_name='Value')
169
  return summary_df, plot_df, all_results
170
-
171
  elif probe_type == "act_titration":
172
  run_spec = protocol[0]
173
  label = run_spec["label"]
@@ -179,13 +179,13 @@ def run_auto_suite(
179
  )
180
  all_results[label] = results
181
  summary_data.extend(results.get("titration_data", []))
182
-
183
  else: # Handles seismic, triangulation, causal_surgery
184
  for i, run_spec in enumerate(protocol):
185
  label = run_spec["label"]
186
  current_probe_type = run_spec.get("probe_type", "seismic")
187
  dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{len(protocol)}) ---")
188
-
189
  results = {}
190
  if current_probe_type == "causal_surgery":
191
  results = run_causal_surgery_probe(
@@ -232,12 +232,12 @@ def run_auto_suite(
232
  plot_data_frames.append(df)
233
 
234
  summary_df = pd.DataFrame(summary_data)
235
-
236
  if probe_type == "act_titration":
237
  plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
238
  else:
239
  plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame()
240
-
241
  if protocol and probe_type not in ["act_titration", "mechanistic_probe"]:
242
  ordered_labels = [run['label'] for run in protocol]
243
  if not summary_df.empty and 'Experiment' in summary_df.columns:
@@ -248,7 +248,7 @@ def run_auto_suite(
248
  plot_df = plot_df.sort_values(['Experiment', 'Step'])
249
 
250
  return summary_df, plot_df, all_results
251
-
252
  finally:
253
  if llm:
254
- release_model(llm)
 
10
 
11
  def get_curated_experiments() -> Dict[str, List[Dict]]:
12
  """Definiert die vordefinierten, wissenschaftlichen Experiment-Protokolle."""
13
+
14
  CALMNESS_CONCEPT = "calmness, serenity, stability, coherence"
15
  CHAOS_CONCEPT = "chaos, disorder, entropy, noise"
16
  STABLE_PROMPT = "identity_self_analysis"
 
113
  llm = get_or_load_model(model_id, seed)
114
  therapeutic_concept = "calmness, serenity, stability, coherence"
115
  therapeutic_strength = 2.0
116
+
117
  spec1 = protocol[0]
118
  progress_callback(0.1, desc="Step 1")
119
  intervention_vector = get_concept_vector(llm, therapeutic_concept)
 
123
  progress_callback=progress_callback, llm_instance=llm, injection_vector_cache=intervention_vector
124
  )
125
  all_results[spec1['label']] = results1
126
+
127
  spec2 = protocol[1]
128
  progress_callback(0.6, desc="Step 2")
129
  results2 = run_seismic_analysis(
 
132
  progress_callback=progress_callback, llm_instance=llm
133
  )
134
  all_results[spec2['label']] = results2
135
+
136
  for label, results in all_results.items():
137
  stats = results.get("stats", {})
138
  summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta"), "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")})
139
  deltas = results.get("state_deltas", [])
140
  df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
141
  plot_data_frames.append(df)
142
+
143
  else:
144
  probe_type = protocol[0].get("probe_type", "seismic")
145
 
 
147
  run_spec = protocol[0]
148
  label = run_spec["label"]
149
  dbg(f"--- Running Mechanistic Probe: '{label}' ---")
150
+
151
  llm = get_or_load_model(model_id, seed)
152
+
153
  results = run_cogitation_loop(
154
  llm=llm, prompt_type=run_spec["prompt_type"],
155
  num_steps=num_steps, temperature=0.1, record_attentions=True
 
159
  deltas = results.get("state_deltas", [])
160
  entropies = results.get("attention_entropies", [])
161
  min_len = min(len(deltas), len(entropies))
162
+
163
  df = pd.DataFrame({
164
  "Step": range(min_len), "State Delta": deltas[:min_len], "Attention Entropy": entropies[:min_len]
165
  })
166
+
167
  summary_df = df.drop(columns='Step').agg(['mean', 'std', 'max']).reset_index().rename(columns={'index':'Statistic'})
168
  plot_df = df.melt(id_vars=['Step'], value_vars=['State Delta', 'Attention Entropy'], var_name='Metric', value_name='Value')
169
  return summary_df, plot_df, all_results
170
+
171
  elif probe_type == "act_titration":
172
  run_spec = protocol[0]
173
  label = run_spec["label"]
 
179
  )
180
  all_results[label] = results
181
  summary_data.extend(results.get("titration_data", []))
182
+
183
  else: # Handles seismic, triangulation, causal_surgery
184
  for i, run_spec in enumerate(protocol):
185
  label = run_spec["label"]
186
  current_probe_type = run_spec.get("probe_type", "seismic")
187
  dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{len(protocol)}) ---")
188
+
189
  results = {}
190
  if current_probe_type == "causal_surgery":
191
  results = run_causal_surgery_probe(
 
232
  plot_data_frames.append(df)
233
 
234
  summary_df = pd.DataFrame(summary_data)
235
+
236
  if probe_type == "act_titration":
237
  plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
238
  else:
239
  plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame()
240
+
241
  if protocol and probe_type not in ["act_titration", "mechanistic_probe"]:
242
  ordered_labels = [run['label'] for run in protocol]
243
  if not summary_df.empty and 'Experiment' in summary_df.columns:
 
248
  plot_df = plot_df.sort_values(['Experiment', 'Step'])
249
 
250
  return summary_df, plot_df, all_results
251
+
252
  finally:
253
  if llm:
254
+ release_model(llm)