Update cognitive_mapping_probe/orchestrator_seismograph.py
Browse files
cognitive_mapping_probe/orchestrator_seismograph.py
CHANGED
|
@@ -7,7 +7,7 @@ from .llm_iface import get_or_load_model, LLM, release_model
|
|
| 7 |
from .resonance_seismograph import run_cogitation_loop, run_silent_cogitation_seismic
|
| 8 |
from .concepts import get_concept_vector
|
| 9 |
from .introspection import generate_introspective_report
|
| 10 |
-
from .signal_analysis import analyze_cognitive_signal,
|
| 11 |
from .utils import dbg
|
| 12 |
|
| 13 |
def run_seismic_analysis(
|
|
@@ -42,21 +42,21 @@ def run_seismic_analysis(
|
|
| 42 |
llm=llm, prompt_type=prompt_type, num_steps=num_steps, temperature=0.1,
|
| 43 |
injection_vector=injection_vector, injection_strength=injection_strength
|
| 44 |
)
|
| 45 |
-
|
| 46 |
stats: Dict[str, Any] = {}
|
| 47 |
results: Dict[str, Any] = {}
|
| 48 |
verdict = "### ⚠️ Analysis Warning\nNo state changes recorded."
|
| 49 |
|
| 50 |
if state_deltas:
|
| 51 |
deltas_np = np.array(state_deltas)
|
| 52 |
-
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)),
|
| 53 |
"max_delta": float(np.max(deltas_np)), "min_delta": float(np.min(deltas_np)) }
|
| 54 |
-
|
| 55 |
signal_metrics = analyze_cognitive_signal(deltas_np)
|
| 56 |
stats.update(signal_metrics)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
results["power_spectrum"] = {"
|
| 60 |
|
| 61 |
verdict = f"### ✅ Seismic Analysis Complete"
|
| 62 |
if injection_vector is not None:
|
|
@@ -94,8 +94,8 @@ def run_triangulation_probe(
|
|
| 94 |
llm=llm, context_prompt_type=prompt_type,
|
| 95 |
introspection_prompt_type="describe_dynamics_structured", num_steps=num_steps
|
| 96 |
)
|
| 97 |
-
|
| 98 |
-
stats = {}
|
| 99 |
verdict = "### ⚠️ Triangulation Warning"
|
| 100 |
if state_deltas:
|
| 101 |
deltas_np = np.array(state_deltas)
|
|
@@ -139,10 +139,10 @@ def run_causal_surgery_probe(
|
|
| 139 |
llm=llm, context_prompt_type=dest_prompt_type,
|
| 140 |
introspection_prompt_type="describe_dynamics_structured", num_steps=num_steps
|
| 141 |
)
|
| 142 |
-
|
| 143 |
deltas_np = np.array(patched_run_results["state_deltas"])
|
| 144 |
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)), "max_delta": float(np.max(deltas_np)) }
|
| 145 |
-
|
| 146 |
results = {
|
| 147 |
"verdict": "### ✅ Causal Surgery Probe Complete",
|
| 148 |
"stats": stats, "state_deltas": patched_run_results["state_deltas"],
|
|
@@ -168,7 +168,7 @@ def run_act_titration_probe(
|
|
| 168 |
temperature=0.1, record_states=True
|
| 169 |
)
|
| 170 |
state_history = source_results["state_history"]
|
| 171 |
-
|
| 172 |
titration_results = []
|
| 173 |
for step in patch_steps:
|
| 174 |
if step >= len(state_history): continue
|
|
@@ -178,7 +178,7 @@ def run_act_titration_probe(
|
|
| 178 |
llm=llm, prompt_type=dest_prompt_type, num_steps=num_steps,
|
| 179 |
temperature=0.1, patch_step=step, patch_state_source=patch_state
|
| 180 |
)
|
| 181 |
-
|
| 182 |
deltas = patched_run_results["state_deltas"]
|
| 183 |
buffer = 10
|
| 184 |
post_patch_deltas = deltas[step + buffer:]
|
|
@@ -189,4 +189,4 @@ def run_act_titration_probe(
|
|
| 189 |
|
| 190 |
return { "verdict": "### ✅ ACT Titration Complete", "titration_data": titration_results }
|
| 191 |
finally:
|
| 192 |
-
release_model(llm)
|
|
|
|
| 7 |
from .resonance_seismograph import run_cogitation_loop, run_silent_cogitation_seismic
|
| 8 |
from .concepts import get_concept_vector
|
| 9 |
from .introspection import generate_introspective_report
|
| 10 |
+
from .signal_analysis import analyze_cognitive_signal, get_power_spectrum_for_plotting
|
| 11 |
from .utils import dbg
|
| 12 |
|
| 13 |
def run_seismic_analysis(
|
|
|
|
| 42 |
llm=llm, prompt_type=prompt_type, num_steps=num_steps, temperature=0.1,
|
| 43 |
injection_vector=injection_vector, injection_strength=injection_strength
|
| 44 |
)
|
| 45 |
+
|
| 46 |
stats: Dict[str, Any] = {}
|
| 47 |
results: Dict[str, Any] = {}
|
| 48 |
verdict = "### ⚠️ Analysis Warning\nNo state changes recorded."
|
| 49 |
|
| 50 |
if state_deltas:
|
| 51 |
deltas_np = np.array(state_deltas)
|
| 52 |
+
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)),
|
| 53 |
"max_delta": float(np.max(deltas_np)), "min_delta": float(np.min(deltas_np)) }
|
| 54 |
+
|
| 55 |
signal_metrics = analyze_cognitive_signal(deltas_np)
|
| 56 |
stats.update(signal_metrics)
|
| 57 |
|
| 58 |
+
freqs, power = get_power_spectrum_for_plotting(deltas_np)
|
| 59 |
+
results["power_spectrum"] = {"frequencies": freqs.tolist(), "power": power.tolist()}
|
| 60 |
|
| 61 |
verdict = f"### ✅ Seismic Analysis Complete"
|
| 62 |
if injection_vector is not None:
|
|
|
|
| 94 |
llm=llm, context_prompt_type=prompt_type,
|
| 95 |
introspection_prompt_type="describe_dynamics_structured", num_steps=num_steps
|
| 96 |
)
|
| 97 |
+
|
| 98 |
+
stats: Dict[str, Any] = {}
|
| 99 |
verdict = "### ⚠️ Triangulation Warning"
|
| 100 |
if state_deltas:
|
| 101 |
deltas_np = np.array(state_deltas)
|
|
|
|
| 139 |
llm=llm, context_prompt_type=dest_prompt_type,
|
| 140 |
introspection_prompt_type="describe_dynamics_structured", num_steps=num_steps
|
| 141 |
)
|
| 142 |
+
|
| 143 |
deltas_np = np.array(patched_run_results["state_deltas"])
|
| 144 |
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)), "max_delta": float(np.max(deltas_np)) }
|
| 145 |
+
|
| 146 |
results = {
|
| 147 |
"verdict": "### ✅ Causal Surgery Probe Complete",
|
| 148 |
"stats": stats, "state_deltas": patched_run_results["state_deltas"],
|
|
|
|
| 168 |
temperature=0.1, record_states=True
|
| 169 |
)
|
| 170 |
state_history = source_results["state_history"]
|
| 171 |
+
|
| 172 |
titration_results = []
|
| 173 |
for step in patch_steps:
|
| 174 |
if step >= len(state_history): continue
|
|
|
|
| 178 |
llm=llm, prompt_type=dest_prompt_type, num_steps=num_steps,
|
| 179 |
temperature=0.1, patch_step=step, patch_state_source=patch_state
|
| 180 |
)
|
| 181 |
+
|
| 182 |
deltas = patched_run_results["state_deltas"]
|
| 183 |
buffer = 10
|
| 184 |
post_patch_deltas = deltas[step + buffer:]
|
|
|
|
| 189 |
|
| 190 |
return { "verdict": "### ✅ ACT Titration Complete", "titration_data": titration_results }
|
| 191 |
finally:
|
| 192 |
+
release_model(llm)
|