import torch from typing import List from tqdm import tqdm from .llm_iface import LLM from .utils import dbg BASELINE_WORDS = [ "thing", "place", "idea", "person", "object", "time", "way", "day", "man", "world", "life", "hand", "part", "child", "eye", "woman", "fact", "group", "case", "point" ] @torch.no_grad() def _get_last_token_hidden_state(llm: LLM, prompt: str) -> torch.Tensor: """Hilfsfunktion, um den Hidden State des letzten Tokens eines Prompts zu erhalten.""" inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device) with torch.no_grad(): outputs = llm.model(**inputs, output_hidden_states=True) last_hidden_state = outputs.hidden_states[-1][0, -1, :].cpu() # KORREKTUR: Greife auf die stabile, abstrahierte Konfiguration zu. expected_size = llm.stable_config.hidden_dim assert last_hidden_state.shape == (expected_size,), \ f"Hidden state shape mismatch. Expected {(expected_size,)}, got {last_hidden_state.shape}" return last_hidden_state @torch.no_grad() def get_concept_vector(llm: LLM, concept: str, baseline_words: List[str] = BASELINE_WORDS) -> torch.Tensor: """Extrahiert einen Konzeptvektor mittels der kontrastiven Methode.""" dbg(f"Extracting contrastive concept vector for '{concept}'...") prompt_template = "Here is a sentence about the concept of {}." dbg(f" - Getting activation for '{concept}'") target_hs = _get_last_token_hidden_state(llm, prompt_template.format(concept)) baseline_hss = [] for word in tqdm(baseline_words, desc=f" - Calculating baseline for '{concept}'", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"): baseline_hss.append(_get_last_token_hidden_state(llm, prompt_template.format(word))) assert all(hs.shape == target_hs.shape for hs in baseline_hss) mean_baseline_hs = torch.stack(baseline_hss).mean(dim=0) dbg(f" - Mean baseline vector computed with norm {torch.norm(mean_baseline_hs).item():.2f}") concept_vector = target_hs - mean_baseline_hs norm = torch.norm(concept_vector).item() dbg(f"Concept vector for '{concept}' extracted with norm {norm:.2f}.") assert torch.isfinite(concept_vector).all() return concept_vector