File size: 6,858 Bytes
c8fa89c
 
8049238
 
8b7e088
b350371
760155b
b9b7087
eef89e3
b350371
c8fa89c
024ef47
c8fa89c
8049238
3bdc105
8049238
 
 
 
 
 
024ef47
3bdc105
16e19a3
 
64ad029
c8454e0
16e19a3
 
b9b7087
64ad029
c8fa89c
024ef47
16e19a3
82f14fe
bca8f87
c8454e0
 
 
 
 
 
 
 
 
16e19a3
 
 
 
 
 
 
 
bca8f87
16e19a3
 
 
 
 
 
bca8f87
82f14fe
 
2a78f31
bca8f87
64ad029
905c230
64ad029
21e8595
024ef47
 
09d65a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8fa89c
024ef47
57dab07
024ef47
 
 
b9b7087
024ef47
 
760155b
 
16e19a3
 
760155b
 
024ef47
2a78f31
024ef47
 
c8454e0
395b2f3
024ef47
 
2a78f31
024ef47
 
 
395b2f3
024ef47
c8fa89c
760155b
16e19a3
a345062
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import pandas as pd
import gc
import torch
import json

from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
from cognitive_mapping_probe.utils import dbg

theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")

def cleanup_memory():
    """Räumt Speicher nach jedem Experimentlauf auf."""
    dbg("Cleaning up memory...")
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    dbg("Memory cleanup complete.")

def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
    """Wrapper für den 'Manual Single Run'-Tab."""
    # (Bleibt unverändert)
    pass # Platzhalter

PLOT_PARAMS_DEFAULT = {
    "x": "Step", "y": "Value", "color": "Metric",
    "title": "Comparative Cognitive Dynamics", "color_legend_title": "Metrics",
    "color_legend_position": "bottom", "show_label": True, "height": 400, "interactive": True
}

def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
    """Wrapper, der nun die speziellen Plots für ACT und Mechanistic Probe handhaben kann."""
    summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)

    dataframe_component = gr.DataFrame(label="Comparative Statistical Signature", value=summary_df, wrap=True, row_count=(len(summary_df), "dynamic"))

    if experiment_name == "ACT Titration (Point of No Return)":
        plot_params_act = {
            "x": "Patch Step", "y": "Post-Patch Mean Delta",
            "title": "Attractor Capture Time (ACT) - Phase Transition",
            "mark": "line", "show_label": True, "height": 400, "interactive": True
        }
        new_plot = gr.LinePlot(value=plot_df, **plot_params_act)
    # --- NEU: Spezielle Plot-Logik für die mechanistische Sonde ---
    elif experiment_name == "Mechanistic Probe (Attention Entropies)":
        plot_params_mech = {
            "x": "Step", "y": "Value", "color": "Metric",
            "title": "Mechanistic Analysis: State Delta vs. Attention Entropy",
            "color_legend_title": "Metric", "show_label": True, "height": 400, "interactive": True
        }
        new_plot = gr.LinePlot(value=plot_df, **plot_params_mech)
    else:
        # Passe die Parameter an, um mit der geschmolzenen DataFrame-Struktur zu arbeiten
        plot_params_dynamic = PLOT_PARAMS_DEFAULT.copy()
        plot_params_dynamic['y'] = 'Delta'
        plot_params_dynamic['color'] = 'Experiment'
        new_plot = gr.LinePlot(value=plot_df, **plot_params_dynamic)


    serializable_results = json.dumps(all_results, indent=2, default=str)
    cleanup_memory()

    return dataframe_component, new_plot, serializable_results

with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
    gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Advanced Experiment Suite")

    with gr.Tabs():
        with gr.TabItem("🔬 Manual Single Run"):
            gr.Markdown("Run a single experiment with manual parameters to explore specific hypotheses.")
            with gr.Row(variant='panel'):
                with gr.Column(scale=1):
                    gr.Markdown("### 1. General Parameters")
                    manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
                    manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")

                    gr.Markdown("### 2. Modulation Parameters")
                    manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness'")
                    manual_strength = gr.Slider(0.0, 5.0, 1.5, step=0.1, label="Injection Strength")
                    manual_run_btn = gr.Button("Run Single Analysis", variant="primary")

                with gr.Column(scale=2):
                    gr.Markdown("### Single Run Results")
                    manual_verdict = gr.Markdown("Analysis results will appear here.")
                    manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400)
                    with gr.Accordion("Raw JSON Output", open=False):
                        manual_raw_json = gr.JSON()

            manual_run_btn.click(
                fn=run_single_analysis_display,
                inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
                outputs=[manual_verdict, manual_plot, manual_raw_json]
            )

        with gr.TabItem("🚀 Automated Suite"):
            gr.Markdown("Run a predefined, curated suite of experiments and visualize the results comparatively.")
            with gr.Row(variant='panel'):
                with gr.Column(scale=1):
                    gr.Markdown("### Auto-Experiment Parameters")
                    auto_model_id = gr.Textbox(value="google/gemma-3-4b-it", label="Model ID")
                    auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
                    auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    auto_experiment_name = gr.Dropdown(
                        choices=list(get_curated_experiments().keys()),
                        # Setze das neue mechanistische Experiment als Standard
                        value="Mechanistic Probe (Attention Entropies)",
                        label="Curated Experiment Protocol"
                    )
                    auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")

                with gr.Column(scale=2):
                    gr.Markdown("### Suite Results Summary")
                    auto_plot_output = gr.LinePlot(**PLOT_PARAMS_DEFAULT)
                    auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True)
                    with gr.Accordion("Raw JSON for all runs", open=False):
                        auto_raw_json = gr.JSON()

            auto_run_btn.click(
                fn=run_auto_suite_display,
                inputs=[auto_model_id, auto_num_steps, auto_seed, auto_experiment_name],
                outputs=[auto_summary_df, auto_plot_output, auto_raw_json]
            )

if __name__ == "__main__":
    # (launch() wird durch Gradio's __main__-Block aufgerufen)
    demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)