File size: 6,409 Bytes
c8fa89c 8049238 8b7e088 b350371 760155b b9b7087 eef89e3 b350371 c8fa89c 024ef47 c8fa89c 8049238 2a78f31 8049238 024ef47 2a78f31 82f14fe 64ad029 b9b7087 64ad029 c8fa89c 024ef47 2a78f31 82f14fe bca8f87 2a78f31 bca8f87 82f14fe 2a78f31 bca8f87 64ad029 905c230 64ad029 21e8595 024ef47 2a78f31 c8fa89c 024ef47 57dab07 024ef47 b9b7087 024ef47 760155b 2a78f31 760155b 024ef47 2a78f31 024ef47 64ad029 395b2f3 024ef47 2a78f31 024ef47 395b2f3 024ef47 c8fa89c 760155b a345062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import gradio as gr
import pandas as pd
import gc
import torch
import json
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
from cognitive_mapping_probe.utils import dbg
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
def cleanup_memory():
"""Eine zentrale Funktion zum Aufräumen des Speichers nach jedem Experimentlauf."""
dbg("Cleaning up memory...")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
dbg("Memory cleanup complete.")
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
"""
Wrapper-Funktion für den "Manual Single Run"-Tab.
"""
results = run_seismic_analysis(*args, progress_callback=progress)
stats, deltas = results.get("stats", {}), results.get("state_deltas", [])
df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
serializable_results = json.dumps(results, indent=2, default=str)
cleanup_memory()
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, serializable_results
PLOT_PARAMS = {
"x": "Step", "y": "Delta", "color": "Experiment",
"title": "Comparative Cognitive Dynamics", "color_legend_title": "Experiment Runs",
"color_legend_position": "bottom", "show_label": True, "height": 400, "interactive": True
}
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
"""
Wrapper-Funktion für den "Automated Suite"-Tab.
"""
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
if "Introspective Report" in summary_df.columns or "Patch Info" in summary_df.columns:
dataframe_component = gr.DataFrame(label="Comparative Statistical Signature", value=summary_df, wrap=True, row_count=(len(summary_df), "dynamic"))
else:
dataframe_component = gr.DataFrame(label="Comparative Statistical Signature", value=summary_df, wrap=True)
new_plot = gr.LinePlot(value=plot_df, **PLOT_PARAMS)
serializable_results = json.dumps(all_results, indent=2, default=str)
cleanup_memory()
return dataframe_component, new_plot, serializable_results
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Advanced Experiment Suite")
with gr.Tabs():
with gr.TabItem("🔬 Manual Single Run"):
gr.Markdown("Run a single experiment with manual parameters to explore specific hypotheses.")
with gr.Row(variant='panel'):
with gr.Column(scale=1):
gr.Markdown("### 1. General Parameters")
manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")
gr.Markdown("### 2. Modulation Parameters")
manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness'")
manual_strength = gr.Slider(0.0, 5.0, 1.5, step=0.1, label="Injection Strength")
manual_run_btn = gr.Button("Run Single Analysis", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Single Run Results")
manual_verdict = gr.Markdown("Analysis results will appear here.")
manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400)
with gr.Accordion("Raw JSON Output", open=False):
manual_raw_json = gr.JSON()
manual_run_btn.click(
fn=run_single_analysis_display,
inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
outputs=[manual_verdict, manual_plot, manual_raw_json]
)
with gr.TabItem("🚀 Automated Suite"):
gr.Markdown("Run a predefined, curated suite of experiments and visualize the results comparatively.")
with gr.Row(variant='panel'):
with gr.Column(scale=1):
gr.Markdown("### Auto-Experiment Parameters")
auto_model_id = gr.Textbox(value="google/gemma-3-4b-it", label="Model ID")
auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
auto_experiment_name = gr.Dropdown(
choices=list(get_curated_experiments().keys()),
value="Causal Surgery (Patching Deletion into Self-Analysis)",
label="Curated Experiment Protocol"
)
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Suite Results Summary")
auto_plot_output = gr.LinePlot(**PLOT_PARAMS)
auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True)
with gr.Accordion("Raw JSON for all runs", open=False):
auto_raw_json = gr.JSON()
auto_run_btn.click(
fn=run_auto_suite_display,
inputs=[auto_model_id, auto_num_steps, auto_seed, auto_experiment_name],
outputs=[auto_summary_df, auto_plot_output, auto_raw_json]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|