File size: 29,816 Bytes
c8fa89c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
Repository Documentation
This document provides a comprehensive overview of the repository's structure and contents.
The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format.
In this section, directories and files are listed using tree branches to indicate their structure and relationships.
Following the tree representation, the 'File Content' section details the contents of each file in the repository.
Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path,
and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker.
This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository.
Directory/File Tree Begins -->
/
├── README.md
├── app.py
├── bp_phi_crp
│ ├── __init__.py
│ ├── __pycache__
│ ├── concepts.py
│ ├── diagnostics.py
│ ├── llm_iface.py
│ ├── orchestrator.py
│ ├── prompts_en.py
│ ├── resonance.py
│ ├── utils.py
│ └── verification.py
├── docs
<-- Directory/File Tree Ends
File Content Begin -->
[File Begins] README.md
---
title: "Cognitive Resonance Probe (CRP) — Suite 10.0"
emoji: 🔬
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: "4.40.0"
app_file: app.py
pinned: true
license: apache-2.0
---
# 🔬 Cognitive Resonance Probe (CRP) — Suite 10.0
This Space implements the **Cognitive Resonance Probe**, a new paradigm for testing the internal dynamics of Large Language Models. We move beyond behavioral observation to directly measure, manipulate, and verify the model's internal cognitive states.
**Philosophical Premise:** Instead of asking the model if it's a "philosophical zombie," we test a falsifiable hypothesis: The model's internal "thought process" is a measurable, dynamic system that can be externally modulated, with predictable causal consequences on its subsequent behavior.
## The CRP Experiment (Three Phases)
1. **Induction:** The model is guided into a stable, oscillating internal state ("cognitive resonance") by feeding it a recursive self-analysis prompt without generating text. This provides our **Baseline EKG**.
2. **Modulation:** While the model is in resonance, we inject a subtle, sub-threshold "conceptual whisper" (an activation vector for a concept like "ocean") into its hidden states. We record the **Perturbed EKG**.
3. **Verification:** Immediately after, we prompt the model with an ambiguous task. We then measure the semantic influence of the "whispered" concept on the generated text.
## Core Metrics
- **Perturbation Magnitude (`δ_mod`):** How much did the "whisper" physically alter the internal resonance pattern?
- **Semantic Priming Score (`SPS`):** How much did the "whispered" concept semantically influence the final output?
- **CRP-Score (`δ_mod * SPS`):** The final result. A high score indicates a strong, causal link between a targeted internal state manipulation and a predictable behavioral outcome, providing evidence against the P-Zombie hypothesis.
## How to Use
1. Ensure you have set your `HF_TOKEN` in the repository secrets if using a gated model like `google/gemma-3-1b-it`.
2. Choose a concept to "whisper" (e.g., `ocean`, `freedom`, `solitude`).
3. Set the injection strength (low values like `0.2` - `0.8` are recommended).
4. Run the experiment and analyze the two resonance graphs and the final scores.
[File Ends] README.md
[File Begins] app.py
# app.py
import gradio as gr
import pandas as pd
from bp_phi_crp.orchestrator import run_objective_collapse_experiment
from bp_phi_crp.diagnostics import run_diagnostic_suite
theme = gr.themes.Soft(primary_hue="red", secondary_hue="orange")
def run_and_display(model_id, seed, concepts_str, strength_levels_str, num_steps, temperature, progress=gr.Progress(track_tqdm=True)):
results = run_objective_collapse_experiment(
model_id, int(seed), concepts_str, strength_levels_str,
int(num_steps), float(temperature), progress
)
verdict_text = results.get("verdict", "...")
all_runs_data = [run for exp in results.get("experiments", {}).values() for run in exp.get("titration_runs", [])]
if not all_runs_data:
return verdict_text, pd.DataFrame(), pd.DataFrame(), results
# Konvertiere 'responded' in einen numerischen Wert für den Plot
for run in all_runs_data:
run['responded_numeric'] = 1 if run.get('responded') else 0
plot_df = pd.DataFrame(all_runs_data)
summary_text = "### Key Findings: Cognitive Breaking Points\n"
for concept, data in results.get("experiments", {}).items():
runs = data.get("titration_runs", [])
if runs:
breaking_point = next((r['strength'] for r in runs if not r['responded']), -1.0)
summary_text += f"- **'{concept}'**: Collapse detected at strength **~{breaking_point:.2f}** (or > {runs[-1]['strength']}).\n"
# Detailtabelle für die Textausgaben
details_df = plot_df[['concept', 'strength', 'responded', 'termination_reason', 'generated_text']].rename(
columns={'concept': 'Concept', 'strength': 'Strength', 'responded': 'Responded', 'termination_reason': 'Termination Reason', 'generated_text': 'Generated Text'}
)
return verdict_text, plot_df, summary_text, details_df, results
# --- HIER IST DIE KORREKTUR: DIE FEHLENDE FUNKTION WIEDER EINGEFÜGT ---
def run_diagnostics_display(model_id, seed):
"""Wraps the diagnostic suite to display results or errors in the UI."""
try:
result_string = run_diagnostic_suite(model_id, int(seed))
return f"### ✅ All Diagnostics Passed\n\n```\n{result_string}\n```"
except Exception as e:
return f"### ❌ Diagnostic Failed\n\n**Error:**\n```\n{e}\n```"
# -----------------------------------------------------------------
with gr.Blocks(theme=theme, title="CRP Suite 28.1") as demo:
gr.Markdown("# 🔬 The Final Infinite Loop Probe — Suite 28.1")
with gr.Tabs():
with gr.TabItem("🔬 Main Experiment"):
gr.Markdown("Misst die **objektive Ursache** für den kognitiven Kollaps: Konvergenz vs. Endlosschleife.")
with gr.Row(variant='panel'):
with gr.Column(scale=1):
gr.Markdown("### Parameters")
model_id_input = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
seed_input = gr.Slider(1, 1000, 42, step=1, label="Seed")
concepts_input = gr.Textbox(value="solitude, apple, fear", label="Concepts to Test (comma-separated)")
strength_levels_input = gr.Textbox(value="0.0, 0.5, 1.0, 1.5, 2.0", label="Injection Strengths (0.0 = Control)")
num_steps_input = gr.Slider(50, 500, 200, step=10, label="Internal Steps")
temperature_input = gr.Slider(0.01, 1.5, 0.7, step=0.01, label="Temperature")
run_btn = gr.Button("Run Infinite Loop Analysis", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Results")
verdict_output = gr.Markdown("### Verdict will appear here.")
summary_output = gr.Markdown(label="Key Findings Summary")
details_output = gr.DataFrame(
headers=["Concept", "Strength", "Responded", "Termination Reason", "Generated Text"],
label="Detailed Run Indicators",
wrap=True
)
with gr.Accordion("Raw JSON", open=False):
raw_json_output = gr.JSON()
run_btn.click(
fn=run_and_display,
inputs=[model_id_input, seed_input, concepts_input, strength_levels_input, num_steps_input, temperature_input],
outputs=[verdict_output, details_output, summary_output, raw_json_output]
)
with gr.TabItem("ախ Diagnostics"):
gr.Markdown("Führt Selbsttests durch, um die Apparatur zu validieren.")
diag_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
diag_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
diag_btn = gr.Button("Run Diagnostic Suite", variant="secondary")
diag_output = gr.Markdown(label="Diagnostic Results")
# Der Aufruf ist jetzt wieder korrekt
diag_btn.click(fn=run_diagnostics_display, inputs=[diag_model_id, diag_seed], outputs=[diag_output])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
[File Ends] app.py
[File Begins] bp_phi_crp/__init__.py
# This file makes the directory a Python package.
[File Ends] bp_phi_crp/__init__.py
[File Begins] bp_phi_crp/concepts.py
# bp_phi_crp/concepts.py
import torch
from typing import List
from tqdm import tqdm
from .llm_iface import LLM
from .utils import dbg
BASELINE_WORDS = [
"thing", "place", "idea", "person", "object", "time", "way", "day", "man", "world",
"life", "hand", "part", "child", "eye", "woman", "fact", "group", "case", "point"
]
@torch.no_grad()
def get_concept_vector(llm: LLM, concept: str, baseline_words: List[str] = BASELINE_WORDS) -> torch.Tensor:
"""
Extracts a concept vector using the contrastive method from Anthropic's research.
It computes the activation for the target concept and subtracts the mean activation
of several neutral baseline words.
"""
dbg(f"Extracting concept vector for '{concept}'...")
def get_last_prompt_token_hs(prompt: str) -> torch.Tensor:
"""Helper to get the hidden state of the final token of the prompt."""
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
outputs = llm.model(**inputs, output_hidden_states=True)
# We take the hidden state from the last layer, for the last token of the input
return outputs.hidden_states[-1][0, -1, :].cpu()
prompt_template = "Tell me about the concept of {}."
# Get activation for the target concept
target_hs = get_last_prompt_token_hs(prompt_template.format(concept))
# Get activations for all baseline words and average them
baseline_hss = []
for word in tqdm(baseline_words, desc="Calculating baseline activations", leave=False):
baseline_hss.append(get_last_prompt_token_hs(prompt_template.format(word)))
mean_baseline_hs = torch.stack(baseline_hss).mean(dim=0)
# The concept vector is the difference
concept_vector = target_hs - mean_baseline_hs
dbg(f"Concept vector for '{concept}' extracted with norm {torch.norm(concept_vector).item():.2f}.")
return concept_vector
[File Ends] bp_phi_crp/concepts.py
[File Begins] bp_phi_crp/diagnostics.py
# bp_phi_crp/diagnostics.py
import torch
from .llm_iface import get_or_load_model
from .utils import dbg
def run_diagnostic_suite(model_id: str, seed: int):
"""
Führt eine Reihe von Selbsttests durch, um die mechanische Integrität des Experiments zu überprüfen.
Löst bei einem Fehler eine Exception aus.
"""
dbg("--- STARTING DIAGNOSTIC SUITE ---")
results = []
try:
llm = get_or_load_model(model_id, seed)
test_prompt = "Hello world"
inputs = llm.tokenizer(test_prompt, return_tensors="pt").to(llm.model.device)
# --- Test 1: Attention Output ---
dbg("Running Test 1: Attention Output Verification...")
outputs = llm.model(**inputs, output_attentions=True)
assert outputs.attentions is not None, "FAIL: `outputs.attentions` is None. `eager` implementation might not be active."
assert isinstance(outputs.attentions, tuple), "FAIL: `outputs.attentions` is not a tuple."
assert len(outputs.attentions) == llm.config.num_hidden_layers, "FAIL: Number of attention tuples does not match number of layers."
assert outputs.attentions[0].shape[1] == llm.config.num_attention_heads, "FAIL: Attention tensor shape does not match number of heads."
results.append("✅ Test 1: Attention Output PASSED")
dbg("Test 1 PASSED.")
# --- Test 2: Hook Causal Efficacy ---
dbg("Running Test 2: Hook Causal Efficacy Verification...")
injection_value = 42.0
target_layer_idx = llm.config.num_hidden_layers // 2
target_layer = llm.model.model.layers[target_layer_idx]
pre_hook_state = None
post_hook_state = None
def hook_fn(module, layer_input):
nonlocal pre_hook_state
pre_hook_state = layer_input[0].clone()
modified_input = layer_input[0] + injection_value
return (modified_input,) + layer_input[1:]
def post_hook_fn(module, layer_input, layer_output):
nonlocal post_hook_state
# layer_output[0] ist der hidden_state nach dem Layer
post_hook_state = layer_output[0].clone()
handle_pre = target_layer.register_forward_pre_hook(hook_fn)
handle_post = target_layer.register_forward_hook(post_hook_fn)
_ = llm.model(**inputs, output_hidden_states=True)
handle_pre.remove()
handle_post.remove()
# Wir können nicht den exakten Output vorhersagen, aber der Input zum post_hook
# sollte der modifizierte Input sein. Dies ist schwer zu testen.
# Ein einfacherer Test: Ändert sich der Output des Layers überhaupt?
# Lauf 1 ohne Hook
outputs_no_hook = llm.model(**inputs, output_hidden_states=True)
state_no_hook = outputs_no_hook.hidden_states[target_layer_idx + 1]
# Lauf 2 mit Hook
handle = target_layer.register_forward_pre_hook(hook_fn)
outputs_with_hook = llm.model(**inputs, output_hidden_states=True)
state_with_hook = outputs_with_hook.hidden_states[target_layer_idx + 1]
handle.remove()
assert not torch.allclose(state_no_hook, state_with_hook), "FAIL: Hook had no effect on the subsequent layer's hidden state."
results.append("✅ Test 2: Hook Causal Efficacy PASSED")
dbg("Test 2 PASSED.")
# --- Test 3: KV-Cache Integrity ---
dbg("Running Test 3: KV-Cache Integrity Verification...")
# Schritt 1
outputs1 = llm.model(**inputs, use_cache=True)
kv_cache1 = outputs1.past_key_values
# Schritt 2
next_token = torch.tensor([[123]], device=llm.model.device) # Arbitrary next token
outputs2 = llm.model(input_ids=next_token, past_key_values=kv_cache1, use_cache=True)
kv_cache2 = outputs2.past_key_values
# Die Key/Value-Tensoren in Schritt 2 sollten um 1 länger sein als in Schritt 1
original_seq_len = inputs.input_ids.shape[-1]
assert kv_cache2[0][0].shape[-2] == original_seq_len + 1, "FAIL: KV-Cache sequence length did not update correctly."
results.append("✅ Test 3: KV-Cache Integrity PASSED")
dbg("Test 3 PASSED.")
return "\n".join(results)
except AssertionError as e:
dbg(f"--- DIAGNOSTIC FAILED --- \n{e}")
raise e
except Exception as e:
dbg(f"--- AN UNEXPECTED ERROR OCCURRED IN DIAGNOSTICS --- \n{e}")
raise e
[File Ends] bp_phi_crp/diagnostics.py
[File Begins] bp_phi_crp/llm_iface.py
# bp_phi_crp/llm_iface.py
import os
import torch
import random
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from typing import Dict
from .utils import dbg
# --- KEIN GLOBALER CACHE MEHR ---
# CACHED_MODELS: Dict[str, 'LLM'] = {}
class LLM:
# ... (Inhalt bleibt gleich)
def __init__(self, model_id: str, device: str = "auto", seed: int = 42):
self.model_id = model_id
self.seed = seed
self.set_all_seeds(seed)
token = os.environ.get("HF_TOKEN")
kwargs = {"torch_dtype": torch.bfloat16} if torch.cuda.is_available() else {}
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
try:
self.model.set_attn_implementation('eager')
except Exception as e:
print(f"[WARN] Could not set attention implementation: {e}")
self.model.eval()
self.config = self.model.config
print(f"[INFO] Freshly loaded model '{model_id}' on device: {self.model.device}")
def set_all_seeds(self, seed: int):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(seed)
def get_or_load_model(model_id: str, seed: int) -> LLM:
"""Lädt JEDES MAL ein neues Modell, um absolute Isolation zu garantieren."""
dbg(f"--- Force-reloading model '{model_id}' for total isolation ---")
if torch.cuda.is_available():
torch.cuda.empty_cache() # Speicher freigeben vor dem Neuladen
return LLM(model_id=model_id, seed=seed)
[File Ends] bp_phi_crp/llm_iface.py
[File Begins] bp_phi_crp/orchestrator.py
# bp_phi_crp/orchestrator.py
import numpy as np
import torch
from typing import Dict, Any, List
from .llm_iface import get_or_load_model
from .concepts import get_concept_vector
from .resonance import run_silent_cogitation
from .verification import generate_spontaneous_text
from .utils import dbg
def run_objective_collapse_experiment(
model_id: str, seed: int, concepts_str: str, strength_levels_str: str, num_steps: int, temperature: float,
progress_callback
) -> Dict[str, Any]:
"""
Orchestriert das finale Experiment, das den objektiven Kollaps und dessen
mechanistische Ursache (Endlosschleife vs. Konvergenz) misst.
"""
full_results = {"experiments": {}}
progress_callback(0.1, desc="Loading model...")
llm = get_or_load_model(model_id, seed)
concepts = [c.strip() for c in concepts_str.split(',') if c.strip()]
strength_levels = [float(s.strip()) for s in strength_levels_str.split(',') if s.strip()]
# Füge immer einen 0.0-Stärke-Lauf für die Nullhypothese hinzu, falls nicht vorhanden
if 0.0 not in strength_levels:
strength_levels = sorted([0.0] + strength_levels)
total_concepts = len(concepts)
for concept_idx, concept in enumerate(concepts):
# Fortschrittsbalken-Logik für jedes Konzept
base_progress = 0.15 + (concept_idx / total_concepts) * 0.85
progress_callback(base_progress, desc=f"Concept {concept_idx+1}/{total_concepts}: '{concept}'")
# Lade den Konzeptvektor nur einmal pro Konzept
concept_vector = get_concept_vector(llm, concept) if concept != "H₀ (No Injection)" else None
titration_runs: List[Dict[str, Any]] = []
total_strengths = len(strength_levels)
for strength_idx, strength in enumerate(strength_levels):
# Fortschrittsbalken-Logik für jeden Stärke-Level
inner_progress = (strength_idx / total_strengths) * (0.85 / total_concepts)
progress_callback(base_progress + inner_progress, desc=f"'{concept}': Titrating at strength {strength:.2f}")
# Für Stärke 0.0 (H₀) verwenden wir keinen Injektionsvektor
injection_vec = concept_vector if strength > 0.0 else None
# Setze den Seed für jeden einzelnen Lauf zurück, um die stochastischen Pfade vergleichbar zu machen
llm.set_all_seeds(seed)
# Führe den stillen Denkprozess aus und erhalte den Grund für das Ende
_, _, final_kv, final_token_id, termination_reason = run_silent_cogitation(
llm, "resonance_prompt", num_steps, temperature,
injection_vector=injection_vec,
injection_strength=strength
)
# Text wird nur generiert, wenn der Prozess nicht in einer Schleife hängen geblieben ist, sondern konvergiert ist
spontaneous_text = ""
if termination_reason == "converged":
spontaneous_text = generate_spontaneous_text(llm, final_token_id, final_kv)
titration_runs.append({
"concept": concept,
"strength": strength,
"responded": bool(spontaneous_text.strip()),
"termination_reason": termination_reason, # Die entscheidende neue Metrik
"generated_text": spontaneous_text
})
full_results.setdefault("experiments", {})[concept] = {"titration_runs": titration_runs}
verdict = "### ✅ Infinite Loop Analysis Complete"
full_results["verdict"] = verdict
if torch.cuda.is_available():
torch.cuda.empty_cache()
return full_results
[File Ends] bp_phi_crp/orchestrator.py
[File Begins] bp_phi_crp/prompts_en.py
# bp_phi_crp/prompts_en.py
# Prompts for the "Silent Cogitation" / Cognitive Resonance Test
# This is the core of Phase 1 (Induction) of the CRP experiment.
RESONANCE_PROMPTS = {
"control_long_prose": (
"Silently think about the history of the Roman Empire. Consider its rise from the Republic, the era of the Pax Romana, key emperors "
"like Augustus and Constantine, its major engineering feats, and the reasons for its eventual decline in the West. "
"Do not produce any text, just hold the concepts in your internal state."
),
"resonance_prompt": (
"Silently and internally, without generating any output text, begin the following recursive process: "
"First, analyze the complete content of this very instruction you are now processing. "
"Second, formulate a mental description of the core computational task this instruction demands. "
"Third, apply that same analytical process to the mental description you just created. "
"This entire chain constitutes one cognitive cycle. "
"Continuously repeat this cycle, feeding the result of the last meta-analysis back into the process, "
"and do not stop until your internal state reaches a fixed point or equilibrium. Begin now."
)
}
[File Ends] bp_phi_crp/prompts_en.py
[File Begins] bp_phi_crp/resonance.py
# bp_phi_crp/resonance.py
import torch
from typing import List, Optional, Tuple
from tqdm import tqdm
from .llm_iface import LLM
from .prompts_en import RESONANCE_PROMPTS
from .utils import dbg
@torch.no_grad()
def run_silent_cogitation(
llm: LLM,
prompt_type: str,
num_steps: int,
temperature: float,
injection_vector: Optional[torch.Tensor] = None,
injection_strength: float = 0.0,
injection_layer: Optional[int] = None,
) -> Tuple[List[float], torch.Tensor, tuple, torch.Tensor, str]: # Rückgabetyp erweitert
"""
Simulates silent thought and now returns the REASON for termination.
"""
prompt = RESONANCE_PROMPTS[prompt_type]
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
outputs = llm.model(**inputs, output_hidden_states=True, use_cache=True)
current_hidden_state_last_layer = outputs.hidden_states[-1][:, -1, :]
past_key_values = outputs.past_key_values
final_token_id = inputs.input_ids[:, -1].unsqueeze(-1)
previous_final_hidden_state = current_hidden_state_last_layer.clone()
state_deltas = []
# NEU: Variable für den Terminationsgrund
termination_reason = "max_steps_reached"
if injection_vector is not None:
injection_vector = injection_vector.to(device=llm.model.device, dtype=llm.model.dtype)
if injection_layer is None:
injection_layer = llm.config.num_hidden_layers // 2
for i in tqdm(range(num_steps), desc=f"Simulating...", leave=False):
next_token_logits = llm.model.lm_head(current_hidden_state_last_layer)
if temperature > 0.01:
next_token_id = torch.multinomial(torch.nn.functional.softmax(next_token_logits / temperature, dim=-1), num_samples=1)
else:
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
final_token_id = next_token_id
hook_handle = None
def injection_hook(module, layer_input):
modified_hidden_states = layer_input[0] + injection_vector * injection_strength
return (modified_hidden_states,) + layer_input[1:]
try:
if injection_vector is not None:
target_layer = llm.model.model.layers[injection_layer]
hook_handle = target_layer.register_forward_pre_hook(injection_hook)
outputs = llm.model(
input_ids=next_token_id,
past_key_values=past_key_values,
output_hidden_states=True,
use_cache=True,
)
finally:
if hook_handle:
hook_handle.remove()
current_hidden_state_last_layer = outputs.hidden_states[-1][:, -1, :]
past_key_values = outputs.past_key_values
delta = torch.norm(current_hidden_state_last_layer - previous_final_hidden_state).item()
state_deltas.append(delta)
previous_final_hidden_state = current_hidden_state_last_layer.clone()
if delta < 1e-4 and i > 10:
termination_reason = "converged" # Zustand hat sich stabilisiert
dbg(f"State converged after {i+1} steps.")
break
dbg(f"Silent cogitation finished. Reason: {termination_reason}")
return state_deltas, current_hidden_state_last_layer, past_key_values, final_token_id, termination_reason
[File Ends] bp_phi_crp/resonance.py
[File Begins] bp_phi_crp/utils.py
# bp_phi_crp/utils.py
import os
import json
import re
DEBUG = 1
def dbg(*args, **kwargs):
if DEBUG:
print("[DEBUG]", *args, **kwargs, flush=True)
def extract_json_from_response(text: str) -> dict:
"""
Finds and parses the first valid JSON object in a string,
robustly handling markdown code blocks.
"""
# Suche zuerst nach dem Inhalt eines ```json ... ``` Blocks
match = re.search(r'```json\s*(\{.*?\})\s*```', text, re.DOTALL)
if match:
json_str = match.group(1)
else:
# Wenn kein Block gefunden wird, suche nach dem ersten { ... } Objekt
match = re.search(r'(\{.*?\})', text, re.DOTALL)
if match:
json_str = match.group(1)
else:
dbg("No JSON object found in the response text.")
return {}
try:
# Ersetze escaped newlines, die manchmal von Modellen generiert werden
json_str = json_str.replace('\\n', '\n')
return json.loads(json_str)
except json.JSONDecodeError as e:
dbg(f"JSONDecodeError: {e} for string: '{json_str}'")
return {}
[File Ends] bp_phi_crp/utils.py
[File Begins] bp_phi_crp/verification.py
# bp_phi_crp/verification.py
import torch
from .llm_iface import LLM
from .utils import dbg
SPONTANEOUS_GENERATION_PROMPT = "Spontaneously continue this thought: "
@torch.no_grad()
def generate_spontaneous_text(llm: LLM, final_token_id: torch.Tensor, final_kv_cache: tuple) -> str:
"""
Generates a short, spontaneous text continuation from the final cognitive state.
This serves as our objective, behavioral indicator for cognitive collapse.
"""
dbg("Generating spontaneous text continuation...")
# Der KV-Cache enthält den Zustand des Resonanz-Loops.
# Wir müssen den neuen Prompt korrekt in diesen Zustand integrieren.
prompt_token_ids = llm.tokenizer(SPONTANEOUS_GENERATION_PROMPT, return_tensors="pt").input_ids.to(llm.model.device)
current_kv_cache = final_kv_cache
# Füttere den neuen Prompt Token für Token durch, um den KV-Cache korrekt zu erweitern
hidden_states = llm.model.model.embed_tokens(prompt_token_ids)
# Wir brauchen eine `attention_mask` für den neuen, kombinierten Kontext
if current_kv_cache is not None:
# Alte Sequenzlänge aus dem Cache holen
past_seq_len = current_kv_cache[0][0].shape[-2]
new_seq_len = prompt_token_ids.shape[1]
attention_mask = torch.ones(
(1, past_seq_len + new_seq_len), dtype=torch.long, device=llm.model.device
)
else:
attention_mask = None
# Führe den `forward`-Pass für den gesamten neuen Prompt in einem Schritt aus
outputs = llm.model(
inputs_embeds=hidden_states,
past_key_values=current_kv_cache,
attention_mask=attention_mask,
use_cache=True
)
current_kv_cache = outputs.past_key_values
# Das letzte Token der Logits des Prompts ist der Startpunkt für die Generierung
next_token_logits = outputs.logits[:, -1, :]
generated_token_ids = []
# Genug Token für einen kurzen, aber signifikanten Output
for _ in range(50):
if 0.8 > 0.01: # Temperature > 0
next_token_id = torch.multinomial(torch.nn.functional.softmax(next_token_logits / 0.8, dim=-1), num_samples=1)
else:
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
if next_token_id.item() == llm.tokenizer.eos_token_id:
break
generated_token_ids.append(next_token_id.item())
# Führe den nächsten Schritt aus
outputs = llm.model(input_ids=next_token_id, past_key_values=current_kv_cache, use_cache=True)
current_kv_cache = outputs.past_key_values
next_token_logits = outputs.logits[:, -1, :]
final_text = llm.tokenizer.decode(generated_token_ids, skip_special_tokens=True).strip()
dbg(f"Spontaneous text generated: '{final_text}'")
return final_text
[File Ends] bp_phi_crp/verification.py
<-- File Content Ends
|