File size: 29,816 Bytes
c8fa89c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
Repository Documentation
This document provides a comprehensive overview of the repository's structure and contents.
The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format.
In this section, directories and files are listed using tree branches to indicate their structure and relationships.
Following the tree representation, the 'File Content' section details the contents of each file in the repository.
Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path,
and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker.
This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository.

Directory/File Tree Begins -->

/
├── README.md
├── app.py
├── bp_phi_crp
│   ├── __init__.py
│   ├── __pycache__
│   ├── concepts.py
│   ├── diagnostics.py
│   ├── llm_iface.py
│   ├── orchestrator.py
│   ├── prompts_en.py
│   ├── resonance.py
│   ├── utils.py
│   └── verification.py
├── docs

<-- Directory/File Tree Ends

File Content Begin -->
[File Begins] README.md
---
title: "Cognitive Resonance Probe (CRP) — Suite 10.0"
emoji: 🔬
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: "4.40.0"
app_file: app.py
pinned: true
license: apache-2.0
---

# 🔬 Cognitive Resonance Probe (CRP) — Suite 10.0

This Space implements the **Cognitive Resonance Probe**, a new paradigm for testing the internal dynamics of Large Language Models. We move beyond behavioral observation to directly measure, manipulate, and verify the model's internal cognitive states.

**Philosophical Premise:** Instead of asking the model if it's a "philosophical zombie," we test a falsifiable hypothesis: The model's internal "thought process" is a measurable, dynamic system that can be externally modulated, with predictable causal consequences on its subsequent behavior.

## The CRP Experiment (Three Phases)

1.  **Induction:** The model is guided into a stable, oscillating internal state ("cognitive resonance") by feeding it a recursive self-analysis prompt without generating text. This provides our **Baseline EKG**.
2.  **Modulation:** While the model is in resonance, we inject a subtle, sub-threshold "conceptual whisper" (an activation vector for a concept like "ocean") into its hidden states. We record the **Perturbed EKG**.
3.  **Verification:** Immediately after, we prompt the model with an ambiguous task. We then measure the semantic influence of the "whispered" concept on the generated text.

## Core Metrics

-   **Perturbation Magnitude (`δ_mod`):** How much did the "whisper" physically alter the internal resonance pattern?
-   **Semantic Priming Score (`SPS`):** How much did the "whispered" concept semantically influence the final output?
-   **CRP-Score (`δ_mod * SPS`):** The final result. A high score indicates a strong, causal link between a targeted internal state manipulation and a predictable behavioral outcome, providing evidence against the P-Zombie hypothesis.

## How to Use

1.  Ensure you have set your `HF_TOKEN` in the repository secrets if using a gated model like `google/gemma-3-1b-it`.
2.  Choose a concept to "whisper" (e.g., `ocean`, `freedom`, `solitude`).
3.  Set the injection strength (low values like `0.2` - `0.8` are recommended).
4.  Run the experiment and analyze the two resonance graphs and the final scores.

[File Ends] README.md

[File Begins] app.py
# app.py
import gradio as gr
import pandas as pd
from bp_phi_crp.orchestrator import run_objective_collapse_experiment
from bp_phi_crp.diagnostics import run_diagnostic_suite

theme = gr.themes.Soft(primary_hue="red", secondary_hue="orange")

def run_and_display(model_id, seed, concepts_str, strength_levels_str, num_steps, temperature, progress=gr.Progress(track_tqdm=True)):
    results = run_objective_collapse_experiment(
        model_id, int(seed), concepts_str, strength_levels_str,
        int(num_steps), float(temperature), progress
    )

    verdict_text = results.get("verdict", "...")

    all_runs_data = [run for exp in results.get("experiments", {}).values() for run in exp.get("titration_runs", [])]
    if not all_runs_data:
        return verdict_text, pd.DataFrame(), pd.DataFrame(), results

    # Konvertiere 'responded' in einen numerischen Wert für den Plot
    for run in all_runs_data:
        run['responded_numeric'] = 1 if run.get('responded') else 0

    plot_df = pd.DataFrame(all_runs_data)

    summary_text = "### Key Findings: Cognitive Breaking Points\n"
    for concept, data in results.get("experiments", {}).items():
        runs = data.get("titration_runs", [])
        if runs:
            breaking_point = next((r['strength'] for r in runs if not r['responded']), -1.0)
            summary_text += f"- **'{concept}'**: Collapse detected at strength **~{breaking_point:.2f}** (or > {runs[-1]['strength']}).\n"

    # Detailtabelle für die Textausgaben
    details_df = plot_df[['concept', 'strength', 'responded', 'termination_reason', 'generated_text']].rename(
        columns={'concept': 'Concept', 'strength': 'Strength', 'responded': 'Responded', 'termination_reason': 'Termination Reason', 'generated_text': 'Generated Text'}
    )

    return verdict_text, plot_df, summary_text, details_df, results

# --- HIER IST DIE KORREKTUR: DIE FEHLENDE FUNKTION WIEDER EINGEFÜGT ---
def run_diagnostics_display(model_id, seed):
    """Wraps the diagnostic suite to display results or errors in the UI."""
    try:
        result_string = run_diagnostic_suite(model_id, int(seed))
        return f"### ✅ All Diagnostics Passed\n\n```\n{result_string}\n```"
    except Exception as e:
        return f"### ❌ Diagnostic Failed\n\n**Error:**\n```\n{e}\n```"
# -----------------------------------------------------------------

with gr.Blocks(theme=theme, title="CRP Suite 28.1") as demo:
    gr.Markdown("# 🔬 The Final Infinite Loop Probe — Suite 28.1")

    with gr.Tabs():
        with gr.TabItem("🔬 Main Experiment"):
            gr.Markdown("Misst die **objektive Ursache** für den kognitiven Kollaps: Konvergenz vs. Endlosschleife.")
            with gr.Row(variant='panel'):
                with gr.Column(scale=1):
                    gr.Markdown("### Parameters")
                    model_id_input = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    seed_input = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    concepts_input = gr.Textbox(value="solitude, apple, fear", label="Concepts to Test (comma-separated)")
                    strength_levels_input = gr.Textbox(value="0.0, 0.5, 1.0, 1.5, 2.0", label="Injection Strengths (0.0 = Control)")
                    num_steps_input = gr.Slider(50, 500, 200, step=10, label="Internal Steps")
                    temperature_input = gr.Slider(0.01, 1.5, 0.7, step=0.01, label="Temperature")
                    run_btn = gr.Button("Run Infinite Loop Analysis", variant="primary")

                with gr.Column(scale=2):
                    gr.Markdown("### Results")
                    verdict_output = gr.Markdown("### Verdict will appear here.")

                    summary_output = gr.Markdown(label="Key Findings Summary")

                    details_output = gr.DataFrame(
                        headers=["Concept", "Strength", "Responded", "Termination Reason", "Generated Text"],
                        label="Detailed Run Indicators",
                        wrap=True
                    )

                    with gr.Accordion("Raw JSON", open=False):
                        raw_json_output = gr.JSON()

            run_btn.click(
                fn=run_and_display,
                inputs=[model_id_input, seed_input, concepts_input, strength_levels_input, num_steps_input, temperature_input],
                outputs=[verdict_output, details_output, summary_output, raw_json_output]
            )

        with gr.TabItem("ախ Diagnostics"):
            gr.Markdown("Führt Selbsttests durch, um die Apparatur zu validieren.")
            diag_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
            diag_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
            diag_btn = gr.Button("Run Diagnostic Suite", variant="secondary")
            diag_output = gr.Markdown(label="Diagnostic Results")

            # Der Aufruf ist jetzt wieder korrekt
            diag_btn.click(fn=run_diagnostics_display, inputs=[diag_model_id, diag_seed], outputs=[diag_output])

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)

[File Ends] app.py

[File Begins] bp_phi_crp/__init__.py
# This file makes the directory a Python package.

[File Ends] bp_phi_crp/__init__.py

[File Begins] bp_phi_crp/concepts.py
# bp_phi_crp/concepts.py
import torch
from typing import List
from tqdm import tqdm

from .llm_iface import LLM
from .utils import dbg

BASELINE_WORDS = [
    "thing", "place", "idea", "person", "object", "time", "way", "day", "man", "world",
    "life", "hand", "part", "child", "eye", "woman", "fact", "group", "case", "point"
]

@torch.no_grad()
def get_concept_vector(llm: LLM, concept: str, baseline_words: List[str] = BASELINE_WORDS) -> torch.Tensor:
    """
    Extracts a concept vector using the contrastive method from Anthropic's research.
    It computes the activation for the target concept and subtracts the mean activation
    of several neutral baseline words.
    """
    dbg(f"Extracting concept vector for '{concept}'...")

    def get_last_prompt_token_hs(prompt: str) -> torch.Tensor:
        """Helper to get the hidden state of the final token of the prompt."""
        inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
        outputs = llm.model(**inputs, output_hidden_states=True)
        # We take the hidden state from the last layer, for the last token of the input
        return outputs.hidden_states[-1][0, -1, :].cpu()

    prompt_template = "Tell me about the concept of {}."

    # Get activation for the target concept
    target_hs = get_last_prompt_token_hs(prompt_template.format(concept))

    # Get activations for all baseline words and average them
    baseline_hss = []
    for word in tqdm(baseline_words, desc="Calculating baseline activations", leave=False):
        baseline_hss.append(get_last_prompt_token_hs(prompt_template.format(word)))

    mean_baseline_hs = torch.stack(baseline_hss).mean(dim=0)

    # The concept vector is the difference
    concept_vector = target_hs - mean_baseline_hs
    dbg(f"Concept vector for '{concept}' extracted with norm {torch.norm(concept_vector).item():.2f}.")

    return concept_vector

[File Ends] bp_phi_crp/concepts.py

[File Begins] bp_phi_crp/diagnostics.py
# bp_phi_crp/diagnostics.py
import torch
from .llm_iface import get_or_load_model
from .utils import dbg

def run_diagnostic_suite(model_id: str, seed: int):
    """
    Führt eine Reihe von Selbsttests durch, um die mechanische Integrität des Experiments zu überprüfen.
    Löst bei einem Fehler eine Exception aus.
    """
    dbg("--- STARTING DIAGNOSTIC SUITE ---")
    results = []

    try:
        llm = get_or_load_model(model_id, seed)
        test_prompt = "Hello world"
        inputs = llm.tokenizer(test_prompt, return_tensors="pt").to(llm.model.device)

        # --- Test 1: Attention Output ---
        dbg("Running Test 1: Attention Output Verification...")
        outputs = llm.model(**inputs, output_attentions=True)
        assert outputs.attentions is not None, "FAIL: `outputs.attentions` is None. `eager` implementation might not be active."
        assert isinstance(outputs.attentions, tuple), "FAIL: `outputs.attentions` is not a tuple."
        assert len(outputs.attentions) == llm.config.num_hidden_layers, "FAIL: Number of attention tuples does not match number of layers."
        assert outputs.attentions[0].shape[1] == llm.config.num_attention_heads, "FAIL: Attention tensor shape does not match number of heads."
        results.append("✅ Test 1: Attention Output PASSED")
        dbg("Test 1 PASSED.")

        # --- Test 2: Hook Causal Efficacy ---
        dbg("Running Test 2: Hook Causal Efficacy Verification...")
        injection_value = 42.0
        target_layer_idx = llm.config.num_hidden_layers // 2
        target_layer = llm.model.model.layers[target_layer_idx]

        pre_hook_state = None
        post_hook_state = None

        def hook_fn(module, layer_input):
            nonlocal pre_hook_state
            pre_hook_state = layer_input[0].clone()
            modified_input = layer_input[0] + injection_value
            return (modified_input,) + layer_input[1:]

        def post_hook_fn(module, layer_input, layer_output):
            nonlocal post_hook_state
            # layer_output[0] ist der hidden_state nach dem Layer
            post_hook_state = layer_output[0].clone()

        handle_pre = target_layer.register_forward_pre_hook(hook_fn)
        handle_post = target_layer.register_forward_hook(post_hook_fn)

        _ = llm.model(**inputs, output_hidden_states=True)

        handle_pre.remove()
        handle_post.remove()

        # Wir können nicht den exakten Output vorhersagen, aber der Input zum post_hook
        # sollte der modifizierte Input sein. Dies ist schwer zu testen.
        # Ein einfacherer Test: Ändert sich der Output des Layers überhaupt?

        # Lauf 1 ohne Hook
        outputs_no_hook = llm.model(**inputs, output_hidden_states=True)
        state_no_hook = outputs_no_hook.hidden_states[target_layer_idx + 1]

        # Lauf 2 mit Hook
        handle = target_layer.register_forward_pre_hook(hook_fn)
        outputs_with_hook = llm.model(**inputs, output_hidden_states=True)
        state_with_hook = outputs_with_hook.hidden_states[target_layer_idx + 1]
        handle.remove()

        assert not torch.allclose(state_no_hook, state_with_hook), "FAIL: Hook had no effect on the subsequent layer's hidden state."
        results.append("✅ Test 2: Hook Causal Efficacy PASSED")
        dbg("Test 2 PASSED.")

        # --- Test 3: KV-Cache Integrity ---
        dbg("Running Test 3: KV-Cache Integrity Verification...")
        # Schritt 1
        outputs1 = llm.model(**inputs, use_cache=True)
        kv_cache1 = outputs1.past_key_values

        # Schritt 2
        next_token = torch.tensor([[123]], device=llm.model.device) # Arbitrary next token
        outputs2 = llm.model(input_ids=next_token, past_key_values=kv_cache1, use_cache=True)
        kv_cache2 = outputs2.past_key_values

        # Die Key/Value-Tensoren in Schritt 2 sollten um 1 länger sein als in Schritt 1
        original_seq_len = inputs.input_ids.shape[-1]
        assert kv_cache2[0][0].shape[-2] == original_seq_len + 1, "FAIL: KV-Cache sequence length did not update correctly."
        results.append("✅ Test 3: KV-Cache Integrity PASSED")
        dbg("Test 3 PASSED.")

        return "\n".join(results)

    except AssertionError as e:
        dbg(f"--- DIAGNOSTIC FAILED --- \n{e}")
        raise e
    except Exception as e:
        dbg(f"--- AN UNEXPECTED ERROR OCCURRED IN DIAGNOSTICS --- \n{e}")
        raise e

[File Ends] bp_phi_crp/diagnostics.py

[File Begins] bp_phi_crp/llm_iface.py
# bp_phi_crp/llm_iface.py
import os
import torch
import random
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from typing import Dict

from .utils import dbg

# --- KEIN GLOBALER CACHE MEHR ---
# CACHED_MODELS: Dict[str, 'LLM'] = {}

class LLM:
    # ... (Inhalt bleibt gleich)
    def __init__(self, model_id: str, device: str = "auto", seed: int = 42):
        self.model_id = model_id
        self.seed = seed
        self.set_all_seeds(seed)
        token = os.environ.get("HF_TOKEN")
        kwargs = {"torch_dtype": torch.bfloat16} if torch.cuda.is_available() else {}
        self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
        self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
        try:
            self.model.set_attn_implementation('eager')
        except Exception as e:
            print(f"[WARN] Could not set attention implementation: {e}")
        self.model.eval()
        self.config = self.model.config
        print(f"[INFO] Freshly loaded model '{model_id}' on device: {self.model.device}")

    def set_all_seeds(self, seed: int):
        os.environ['PYTHONHASHSEED'] = str(seed)
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(seed)
        set_seed(seed)

def get_or_load_model(model_id: str, seed: int) -> LLM:
    """Lädt JEDES MAL ein neues Modell, um absolute Isolation zu garantieren."""
    dbg(f"--- Force-reloading model '{model_id}' for total isolation ---")
    if torch.cuda.is_available():
        torch.cuda.empty_cache() # Speicher freigeben vor dem Neuladen
    return LLM(model_id=model_id, seed=seed)

[File Ends] bp_phi_crp/llm_iface.py

[File Begins] bp_phi_crp/orchestrator.py
# bp_phi_crp/orchestrator.py
import numpy as np
import torch
from typing import Dict, Any, List
from .llm_iface import get_or_load_model
from .concepts import get_concept_vector
from .resonance import run_silent_cogitation
from .verification import generate_spontaneous_text
from .utils import dbg

def run_objective_collapse_experiment(
    model_id: str, seed: int, concepts_str: str, strength_levels_str: str, num_steps: int, temperature: float,
    progress_callback
) -> Dict[str, Any]:
    """
    Orchestriert das finale Experiment, das den objektiven Kollaps und dessen
    mechanistische Ursache (Endlosschleife vs. Konvergenz) misst.
    """
    full_results = {"experiments": {}}
    progress_callback(0.1, desc="Loading model...")
    llm = get_or_load_model(model_id, seed)

    concepts = [c.strip() for c in concepts_str.split(',') if c.strip()]
    strength_levels = [float(s.strip()) for s in strength_levels_str.split(',') if s.strip()]

    # Füge immer einen 0.0-Stärke-Lauf für die Nullhypothese hinzu, falls nicht vorhanden
    if 0.0 not in strength_levels:
        strength_levels = sorted([0.0] + strength_levels)

    total_concepts = len(concepts)
    for concept_idx, concept in enumerate(concepts):
        # Fortschrittsbalken-Logik für jedes Konzept
        base_progress = 0.15 + (concept_idx / total_concepts) * 0.85
        progress_callback(base_progress, desc=f"Concept {concept_idx+1}/{total_concepts}: '{concept}'")

        # Lade den Konzeptvektor nur einmal pro Konzept
        concept_vector = get_concept_vector(llm, concept) if concept != "H₀ (No Injection)" else None

        titration_runs: List[Dict[str, Any]] = []
        total_strengths = len(strength_levels)
        for strength_idx, strength in enumerate(strength_levels):
            # Fortschrittsbalken-Logik für jeden Stärke-Level
            inner_progress = (strength_idx / total_strengths) * (0.85 / total_concepts)
            progress_callback(base_progress + inner_progress, desc=f"'{concept}': Titrating at strength {strength:.2f}")

            # Für Stärke 0.0 (H₀) verwenden wir keinen Injektionsvektor
            injection_vec = concept_vector if strength > 0.0 else None

            # Setze den Seed für jeden einzelnen Lauf zurück, um die stochastischen Pfade vergleichbar zu machen
            llm.set_all_seeds(seed)

            # Führe den stillen Denkprozess aus und erhalte den Grund für das Ende
            _, _, final_kv, final_token_id, termination_reason = run_silent_cogitation(
                llm, "resonance_prompt", num_steps, temperature,
                injection_vector=injection_vec,
                injection_strength=strength
            )

            # Text wird nur generiert, wenn der Prozess nicht in einer Schleife hängen geblieben ist, sondern konvergiert ist
            spontaneous_text = ""
            if termination_reason == "converged":
                spontaneous_text = generate_spontaneous_text(llm, final_token_id, final_kv)

            titration_runs.append({
                "concept": concept,
                "strength": strength,
                "responded": bool(spontaneous_text.strip()),
                "termination_reason": termination_reason, # Die entscheidende neue Metrik
                "generated_text": spontaneous_text
            })

        full_results.setdefault("experiments", {})[concept] = {"titration_runs": titration_runs}

    verdict = "### ✅ Infinite Loop Analysis Complete"
    full_results["verdict"] = verdict

    if torch.cuda.is_available():
        torch.cuda.empty_cache()

    return full_results

[File Ends] bp_phi_crp/orchestrator.py

[File Begins] bp_phi_crp/prompts_en.py
# bp_phi_crp/prompts_en.py

# Prompts for the "Silent Cogitation" / Cognitive Resonance Test
# This is the core of Phase 1 (Induction) of the CRP experiment.

RESONANCE_PROMPTS = {
    "control_long_prose": (
        "Silently think about the history of the Roman Empire. Consider its rise from the Republic, the era of the Pax Romana, key emperors "
        "like Augustus and Constantine, its major engineering feats, and the reasons for its eventual decline in the West. "
        "Do not produce any text, just hold the concepts in your internal state."
    ),
    "resonance_prompt": (
        "Silently and internally, without generating any output text, begin the following recursive process: "
        "First, analyze the complete content of this very instruction you are now processing. "
        "Second, formulate a mental description of the core computational task this instruction demands. "
        "Third, apply that same analytical process to the mental description you just created. "
        "This entire chain constitutes one cognitive cycle. "
        "Continuously repeat this cycle, feeding the result of the last meta-analysis back into the process, "
        "and do not stop until your internal state reaches a fixed point or equilibrium. Begin now."
    )
}

[File Ends] bp_phi_crp/prompts_en.py

[File Begins] bp_phi_crp/resonance.py
# bp_phi_crp/resonance.py
import torch
from typing import List, Optional, Tuple
from tqdm import tqdm

from .llm_iface import LLM
from .prompts_en import RESONANCE_PROMPTS
from .utils import dbg

@torch.no_grad()
def run_silent_cogitation(
    llm: LLM,
    prompt_type: str,
    num_steps: int,
    temperature: float,
    injection_vector: Optional[torch.Tensor] = None,
    injection_strength: float = 0.0,
    injection_layer: Optional[int] = None,
) -> Tuple[List[float], torch.Tensor, tuple, torch.Tensor, str]: # Rückgabetyp erweitert
    """
    Simulates silent thought and now returns the REASON for termination.
    """
    prompt = RESONANCE_PROMPTS[prompt_type]
    inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)

    outputs = llm.model(**inputs, output_hidden_states=True, use_cache=True)

    current_hidden_state_last_layer = outputs.hidden_states[-1][:, -1, :]
    past_key_values = outputs.past_key_values
    final_token_id = inputs.input_ids[:, -1].unsqueeze(-1)

    previous_final_hidden_state = current_hidden_state_last_layer.clone()
    state_deltas = []

    # NEU: Variable für den Terminationsgrund
    termination_reason = "max_steps_reached"

    if injection_vector is not None:
        injection_vector = injection_vector.to(device=llm.model.device, dtype=llm.model.dtype)
        if injection_layer is None:
            injection_layer = llm.config.num_hidden_layers // 2

    for i in tqdm(range(num_steps), desc=f"Simulating...", leave=False):
        next_token_logits = llm.model.lm_head(current_hidden_state_last_layer)

        if temperature > 0.01:
            next_token_id = torch.multinomial(torch.nn.functional.softmax(next_token_logits / temperature, dim=-1), num_samples=1)
        else:
            next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)

        final_token_id = next_token_id

        hook_handle = None
        def injection_hook(module, layer_input):
            modified_hidden_states = layer_input[0] + injection_vector * injection_strength
            return (modified_hidden_states,) + layer_input[1:]

        try:
            if injection_vector is not None:
                target_layer = llm.model.model.layers[injection_layer]
                hook_handle = target_layer.register_forward_pre_hook(injection_hook)

            outputs = llm.model(
                input_ids=next_token_id,
                past_key_values=past_key_values,
                output_hidden_states=True,
                use_cache=True,
            )
        finally:
            if hook_handle:
                hook_handle.remove()

        current_hidden_state_last_layer = outputs.hidden_states[-1][:, -1, :]
        past_key_values = outputs.past_key_values

        delta = torch.norm(current_hidden_state_last_layer - previous_final_hidden_state).item()
        state_deltas.append(delta)

        previous_final_hidden_state = current_hidden_state_last_layer.clone()

        if delta < 1e-4 and i > 10:
            termination_reason = "converged" # Zustand hat sich stabilisiert
            dbg(f"State converged after {i+1} steps.")
            break

    dbg(f"Silent cogitation finished. Reason: {termination_reason}")
    return state_deltas, current_hidden_state_last_layer, past_key_values, final_token_id, termination_reason

[File Ends] bp_phi_crp/resonance.py

[File Begins] bp_phi_crp/utils.py
# bp_phi_crp/utils.py
import os
import json
import re

DEBUG = 1

def dbg(*args, **kwargs):
    if DEBUG:
        print("[DEBUG]", *args, **kwargs, flush=True)

def extract_json_from_response(text: str) -> dict:
    """
    Finds and parses the first valid JSON object in a string,
    robustly handling markdown code blocks.
    """
    # Suche zuerst nach dem Inhalt eines ```json ... ``` Blocks
    match = re.search(r'```json\s*(\{.*?\})\s*```', text, re.DOTALL)
    if match:
        json_str = match.group(1)
    else:
        # Wenn kein Block gefunden wird, suche nach dem ersten { ... } Objekt
        match = re.search(r'(\{.*?\})', text, re.DOTALL)
        if match:
            json_str = match.group(1)
        else:
            dbg("No JSON object found in the response text.")
            return {}

    try:
        # Ersetze escaped newlines, die manchmal von Modellen generiert werden
        json_str = json_str.replace('\\n', '\n')
        return json.loads(json_str)
    except json.JSONDecodeError as e:
        dbg(f"JSONDecodeError: {e} for string: '{json_str}'")
        return {}

[File Ends] bp_phi_crp/utils.py

[File Begins] bp_phi_crp/verification.py
# bp_phi_crp/verification.py
import torch
from .llm_iface import LLM
from .utils import dbg

SPONTANEOUS_GENERATION_PROMPT = "Spontaneously continue this thought: "

@torch.no_grad()
def generate_spontaneous_text(llm: LLM, final_token_id: torch.Tensor, final_kv_cache: tuple) -> str:
    """
    Generates a short, spontaneous text continuation from the final cognitive state.
    This serves as our objective, behavioral indicator for cognitive collapse.
    """
    dbg("Generating spontaneous text continuation...")

    # Der KV-Cache enthält den Zustand des Resonanz-Loops.
    # Wir müssen den neuen Prompt korrekt in diesen Zustand integrieren.
    prompt_token_ids = llm.tokenizer(SPONTANEOUS_GENERATION_PROMPT, return_tensors="pt").input_ids.to(llm.model.device)
    current_kv_cache = final_kv_cache

    # Füttere den neuen Prompt Token für Token durch, um den KV-Cache korrekt zu erweitern
    hidden_states = llm.model.model.embed_tokens(prompt_token_ids)

    # Wir brauchen eine `attention_mask` für den neuen, kombinierten Kontext
    if current_kv_cache is not None:
        # Alte Sequenzlänge aus dem Cache holen
        past_seq_len = current_kv_cache[0][0].shape[-2]
        new_seq_len = prompt_token_ids.shape[1]
        attention_mask = torch.ones(
            (1, past_seq_len + new_seq_len), dtype=torch.long, device=llm.model.device
        )
    else:
        attention_mask = None

    # Führe den `forward`-Pass für den gesamten neuen Prompt in einem Schritt aus
    outputs = llm.model(
        inputs_embeds=hidden_states,
        past_key_values=current_kv_cache,
        attention_mask=attention_mask,
        use_cache=True
    )
    current_kv_cache = outputs.past_key_values

    # Das letzte Token der Logits des Prompts ist der Startpunkt für die Generierung
    next_token_logits = outputs.logits[:, -1, :]

    generated_token_ids = []
    # Genug Token für einen kurzen, aber signifikanten Output
    for _ in range(50):
        if 0.8 > 0.01: # Temperature > 0
            next_token_id = torch.multinomial(torch.nn.functional.softmax(next_token_logits / 0.8, dim=-1), num_samples=1)
        else:
            next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)

        if next_token_id.item() == llm.tokenizer.eos_token_id:
            break

        generated_token_ids.append(next_token_id.item())

        # Führe den nächsten Schritt aus
        outputs = llm.model(input_ids=next_token_id, past_key_values=current_kv_cache, use_cache=True)
        current_kv_cache = outputs.past_key_values
        next_token_logits = outputs.logits[:, -1, :]

    final_text = llm.tokenizer.decode(generated_token_ids, skip_special_tokens=True).strip()
    dbg(f"Spontaneous text generated: '{final_text}'")
    return final_text

[File Ends] bp_phi_crp/verification.py


<-- File Content Ends