neuralworm's picture
Update cognitive_mapping_probe/resonance_seismograph.py
d15bd24 verified
raw
history blame
6.58 kB
import torch
import numpy as np
from typing import Optional, List, Dict, Any, Tuple
from tqdm import tqdm
from .llm_iface import LLM
from .prompts import RESONANCE_PROMPTS
from .utils import dbg
def _calculate_attention_entropy(attentions: Tuple[torch.Tensor, ...]) -> float:
"""
Berechnet die mittlere Entropie der Attention-Verteilungen.
Ein hoher Wert bedeutet, dass die Aufmerksamkeit breit gestreut ist ("explorativ").
Ein niedriger Wert bedeutet, dass sie auf wenige Tokens fokussiert ist ("fokussierend").
"""
total_entropy = 0.0
num_heads = 0
# Iteriere über alle Layer
for layer_attention in attentions:
# layer_attention shape: [batch_size, num_heads, seq_len, seq_len]
# Für unsere Zwecke ist batch_size=1, seq_len=1 (wir schauen nur auf das letzte Token)
# Die relevante Verteilung ist die letzte Zeile der Attention-Matrix
attention_probs = layer_attention[:, :, -1, :]
# Stabilisiere die Logarithmus-Berechnung
attention_probs = attention_probs + 1e-9
# Entropie-Formel: - sum(p * log2(p))
log_probs = torch.log2(attention_probs)
entropy_per_head = -torch.sum(attention_probs * log_probs, dim=-1)
total_entropy += torch.sum(entropy_per_head).item()
num_heads += attention_probs.shape[1]
return total_entropy / num_heads if num_heads > 0 else 0.0
@torch.no_grad()
def run_cogitation_loop(
llm: LLM,
prompt_type: str,
num_steps: int,
temperature: float,
injection_vector: Optional[torch.Tensor] = None,
injection_strength: float = 0.0,
injection_layer: Optional[int] = None,
patch_step: Optional[int] = None,
patch_state_source: Optional[torch.Tensor] = None,
reset_kv_cache_on_patch: bool = False,
record_states: bool = False,
record_attentions: bool = False,
) -> Dict[str, Any]:
"""
Eine verallgemeinerte Version, die nun auch die Aufzeichnung von Attention-Mustern
und die Berechnung der Entropie unterstützt.
"""
prompt = RESONANCE_PROMPTS[prompt_type]
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
outputs = llm.model(**inputs, output_hidden_states=True, use_cache=True, output_attentions=record_attentions)
hidden_state_2d = outputs.hidden_states[-1][:, -1, :]
kv_cache = outputs.past_key_values
state_deltas: List[float] = []
state_history: List[torch.Tensor] = []
attention_entropies: List[float] = []
if record_attentions and outputs.attentions:
attention_entropies.append(_calculate_attention_entropy(outputs.attentions))
for i in tqdm(range(num_steps), desc=f"Cognitive Loop ({prompt_type})", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
if i == patch_step and patch_state_source is not None:
dbg(f"--- Applying Causal Surgery at step {i}: Patching state. ---")
hidden_state_2d = patch_state_source.clone().to(device=llm.model.device, dtype=llm.model.dtype)
if reset_kv_cache_on_patch:
dbg("--- KV-Cache has been RESET as part of the intervention. ---")
kv_cache = None
if record_states:
state_history.append(hidden_state_2d.cpu())
next_token_logits = llm.model.lm_head(hidden_state_2d)
temp_to_use = temperature if temperature > 0.0 else 1.0
probabilities = torch.nn.functional.softmax(next_token_logits / temp_to_use, dim=-1)
if temperature > 0.0:
next_token_id = torch.multinomial(probabilities, num_samples=1)
else:
next_token_id = torch.argmax(probabilities, dim=-1).unsqueeze(-1)
hook_handle = None
if injection_vector is not None and injection_strength > 0:
injection_vector = injection_vector.to(device=llm.model.device, dtype=llm.model.dtype)
if injection_layer is None:
injection_layer = llm.stable_config.num_layers // 2
def injection_hook(module: Any, layer_input: Any) -> Any:
seq_len = layer_input[0].shape[1]
injection_3d = injection_vector.unsqueeze(0).expand(1, seq_len, -1)
modified_hidden_states = layer_input[0] + (injection_3d * injection_strength)
return (modified_hidden_states,) + layer_input[1:]
try:
if injection_vector is not None and injection_strength > 0 and injection_layer is not None:
assert 0 <= injection_layer < llm.stable_config.num_layers, f"Injection layer {injection_layer} is out of bounds."
target_layer = llm.stable_config.layer_list[injection_layer]
hook_handle = target_layer.register_forward_pre_hook(injection_hook)
outputs = llm.model(
input_ids=next_token_id, past_key_values=kv_cache,
output_hidden_states=True, use_cache=True,
output_attentions=record_attentions
)
finally:
if hook_handle:
hook_handle.remove()
hook_handle = None
new_hidden_state = outputs.hidden_states[-1][:, -1, :]
kv_cache = outputs.past_key_values
if record_attentions and outputs.attentions:
attention_entropies.append(_calculate_attention_entropy(outputs.attentions))
delta = torch.norm(new_hidden_state - hidden_state_2d).item()
state_deltas.append(delta)
hidden_state_2d = new_hidden_state.clone()
dbg(f"Cognitive loop finished after {num_steps} steps.")
return {
"state_deltas": state_deltas,
"state_history": state_history,
"attention_entropies": attention_entropies,
"final_hidden_state": hidden_state_2d,
"final_kv_cache": kv_cache,
}
def run_silent_cogitation_seismic(
llm: LLM,
prompt_type: str,
num_steps: int,
temperature: float,
injection_vector: Optional[torch.Tensor] = None,
injection_strength: float = 0.0,
injection_layer: Optional[int] = None
) -> List[float]:
"""
Ein abwärtskompatibler Wrapper, der die alte, einfachere Schnittstelle beibehält.
Ruft den neuen, verallgemeinerten Loop auf und gibt nur die Deltas zurück.
"""
results = run_cogitation_loop(
llm=llm, prompt_type=prompt_type, num_steps=num_steps, temperature=temperature,
injection_vector=injection_vector, injection_strength=injection_strength,
injection_layer=injection_layer
)
return results["state_deltas"]