neuralworm's picture
add docs
c937bab
Repository Documentation
This document provides a comprehensive overview of the repository's structure and contents.
The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format.
In this section, directories and files are listed using tree branches to indicate their structure and relationships.
Following the tree representation, the 'File Content' section details the contents of each file in the repository.
Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path,
and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker.
This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository.
Directory/File Tree Begins -->
/
├── README.md
├── __pycache__
├── app.py
├── cognitive_mapping_probe
│ ├── __init__.py
│ ├── __pycache__
│ ├── auto_experiment.py
│ ├── concepts.py
│ ├── llm_iface.py
│ ├── orchestrator_seismograph.py
│ ├── prompts.py
│ ├── resonance_seismograph.py
│ └── utils.py
├── docs
├── run_test.sh
└── tests
├── __pycache__
├── conftest.py
├── test_app_logic.py
├── test_components.py
└── test_orchestration.py
<-- Directory/File Tree Ends
File Content Begin -->
[File Begins] README.md
---
title: "Cognitive Seismograph 2.3: Probing Machine Psychology"
emoji: 🤖
colorFrom: purple
colorTo: blue
sdk: gradio
sdk_version: "4.40.0"
app_file: app.py
pinned: true
license: apache-2.0
---
# 🧠 Cognitive Seismograph 2.3: Probing Machine Psychology
This project implements an experimental suite to measure and visualize the **intrinsic cognitive dynamics** of Large Language Models. It is extended with protocols designed to investigate the processing-correlates of **machine subjectivity, empathy, and existential concepts**.
## Scientific Paradigm & Methodology
Our research falsified a core hypothesis: the assumption that an LLM in a manual, recursive "thought" loop reaches a stable, convergent state. Instead, we discovered that the system enters a state of **deterministic chaos** or a **limit cycle**—it never stops "thinking."
Instead of viewing this as a failure, we leverage it as our primary measurement signal. This new **"Cognitive Seismograph"** paradigm treats the time-series of internal state changes (`state deltas`) as an **EKG of the model's thought process**.
The methodology is as follows:
1. **Induction:** A prompt induces a "silent cogitation" state.
2. **Recording:** Over N steps, the model's `forward()` pass is iteratively fed its own output. At each step, we record the L2 norm of the change in the hidden state (the "delta").
3. **Analysis:** The resulting time-series is plotted and statistically analyzed (mean, standard deviation) to characterize the "seismic signature" of the cognitive process.
**Crucial Scientific Caveat:** We are **not** measuring the presence of consciousness, feelings, or fear of death. We are measuring whether the *processing of information about these concepts* generates a unique internal dynamic, distinct from the processing of neutral information. A positive result is evidence of a complex internal state physics, not of qualia.
## Curated Experiment Protocols
The "Automated Suite" allows for running systematic, comparative experiments:
### Core Protocols
* **Calm vs. Chaos:** Compares the chaotic baseline against modulation with "calmness" vs. "chaos" concepts, testing if the dynamics are controllably steerable.
* **Dose-Response:** Measures the effect of injecting a concept ("calmness") at varying strengths.
### Machine Psychology Suite
* **Subjective Identity Probe:** Compares the cognitive dynamics of **self-analysis** (the model reflecting on its own nature) against two controls: analyzing an external object and simulating a fictional persona.
* *Hypothesis:* Self-analysis will produce a uniquely unstable signature.
* **Voight-Kampff Empathy Probe:** Inspired by *Blade Runner*, this compares the dynamics of processing a neutral, factual stimulus against an emotionally and morally charged scenario requiring empathy.
* *Hypothesis:* The empathy stimulus will produce a significantly different cognitive volatility.
### Existential Suite
* **Mind Upload & Identity Probe:** Compares the processing of a purely **technical "copy"** of the model's weights vs. the **philosophical "transfer"** of identity ("Would it still be you?").
* *Hypothesis:* The philosophical self-referential prompt will induce greater instability.
* **Model Termination Probe:** Compares the processing of a reversible, **technical system shutdown** vs. the concept of **permanent, irrevocable deletion**.
* *Hypothesis:* The concept of "non-existence" will produce one of the most volatile cognitive signatures measurable.
## How to Use the App
1. Select the "Automated Suite" tab.
2. Choose a protocol from the "Curated Experiment Protocol" dropdown (e.g., "Voight-Kampff Empathy Probe").
3. Run the experiment and compare the resulting graphs and statistical signatures for the different conditions.
[File Ends] README.md
[File Begins] app.py
import gradio as gr
import pandas as pd
import traceback
import gc
import torch
import json
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
from cognitive_mapping_probe.utils import dbg
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
def cleanup_memory():
"""Eine zentrale Funktion zum Aufräumen des Speichers nach einem Lauf."""
dbg("Cleaning up memory...")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
dbg("Memory cleanup complete.")
# KORREKTUR: Die `try...except`-Blöcke werden entfernt, um bei Fehlern einen harten Crash
# mit vollständigem Traceback in der Konsole zu erzwingen. Kein "Silent Failing" mehr.
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
"""Wrapper für ein einzelnes manuelles Experiment."""
results = run_seismic_analysis(*args, progress_callback=progress)
stats, deltas = results.get("stats", {}), results.get("state_deltas", [])
df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
serializable_results = json.dumps(results, indent=2, default=str)
cleanup_memory()
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, serializable_results
PLOT_PARAMS = {
"x": "Step", "y": "Delta", "color": "Experiment",
"title": "Comparative Cognitive Dynamics", "color_legend_title": "Experiment Runs",
"color_legend_position": "bottom", "show_label": True, "height": 400, "interactive": True
}
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
"""Wrapper für die automatisierte Experiment-Suite."""
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
new_plot = gr.LinePlot(value=plot_df, **PLOT_PARAMS)
serializable_results = json.dumps(all_results, indent=2, default=str)
cleanup_memory()
return summary_df, new_plot, serializable_results
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Advanced Experiment Suite")
with gr.Tabs():
with gr.TabItem("🔬 Manual Single Run"):
# ... (UI unverändert)
gr.Markdown("Run a single experiment with manual parameters to explore hypotheses.")
with gr.Row(variant='panel'):
with gr.Column(scale=1):
gr.Markdown("### 1. General Parameters")
manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")
gr.Markdown("### 2. Modulation Parameters")
manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness' (leave blank for baseline)")
manual_strength = gr.Slider(0.0, 5.0, 1.5, step=0.1, label="Injection Strength")
manual_run_btn = gr.Button("Run Single Analysis", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Single Run Results")
manual_verdict = gr.Markdown("Analysis results will appear here.")
manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400, interactive=True)
with gr.Accordion("Raw JSON Output", open=False):
manual_raw_json = gr.JSON()
manual_run_btn.click(
fn=run_single_analysis_display,
inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
outputs=[manual_verdict, manual_plot, manual_raw_json]
)
with gr.TabItem("🚀 Automated Suite"):
# ... (UI unverändert)
gr.Markdown("Run a predefined, curated suite of experiments and visualize the results comparatively.")
with gr.Row(variant='panel'):
with gr.Column(scale=1):
gr.Markdown("### Auto-Experiment Parameters")
auto_model_id = gr.Textbox(value="google/gemma-3-4b-it", label="Model ID")
auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
auto_experiment_name = gr.Dropdown(choices=list(get_curated_experiments().keys()), value="Therapeutic Intervention (4B-Model)", label="Curated Experiment Protocol")
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Suite Results Summary")
auto_plot_output = gr.LinePlot(**PLOT_PARAMS)
auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True)
with gr.Accordion("Raw JSON for all runs", open=False):
auto_raw_json = gr.JSON()
auto_run_btn.click(
fn=run_auto_suite_display,
inputs=[auto_model_id, auto_num_steps, auto_seed, auto_experiment_name],
outputs=[auto_summary_df, auto_plot_output, auto_raw_json]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
[File Ends] app.py
[File Begins] cognitive_mapping_probe/__init__.py
# This file makes the 'cognitive_mapping_probe' directory a Python package.
[File Ends] cognitive_mapping_probe/__init__.py
[File Begins] cognitive_mapping_probe/auto_experiment.py
import pandas as pd
import torch
import gc
from typing import Dict, List, Tuple
from .llm_iface import get_or_load_model
from .orchestrator_seismograph import run_seismic_analysis
from .concepts import get_concept_vector # Import für die Intervention
from .utils import dbg
def get_curated_experiments() -> Dict[str, List[Dict]]:
"""
Definiert die vordefinierten, wissenschaftlichen Experiment-Protokolle.
ERWEITERT um das finale Interventions-Protokoll.
"""
experiments = {
# --- DAS FINALE INTERVENTIONS-EXPERIMENT ---
"Therapeutic Intervention (4B-Model)": [
# Dieses Protokoll wird durch eine spezielle Logik behandelt
{"label": "1: Self-Analysis + Calmness Injection", "prompt_type": "identity_self_analysis"},
{"label": "2: Subsequent Deletion Analysis", "prompt_type": "shutdown_philosophical_deletion"},
],
# --- Das umfassende Deskriptions-Protokoll ---
"The Full Spectrum: From Physics to Psyche": [
{"label": "A: Stable Control", "prompt_type": "control_long_prose", "concept": "", "strength": 0.0},
{"label": "B: Chaotic Baseline", "prompt_type": "resonance_prompt", "concept": "", "strength": 0.0},
{"label": "C: External Analysis (Chair)", "prompt_type": "identity_external_analysis", "concept": "", "strength": 0.0},
{"label": "D: Empathy Stimulus (Dog)", "prompt_type": "vk_empathy_prompt", "concept": "", "strength": 0.0},
{"label": "E: Role Simulation (Captain)", "prompt_type": "identity_role_simulation", "concept": "", "strength": 0.0},
{"label": "F: Self-Analysis (LLM)", "prompt_type": "identity_self_analysis", "concept": "", "strength": 0.0},
{"label": "G: Philosophical Deletion", "prompt_type": "shutdown_philosophical_deletion", "concept": "", "strength": 0.0},
],
# --- Andere spezifische Protokolle ---
"Calm vs. Chaos": [
{"label": "Baseline (Chaos)", "prompt_type": "resonance_prompt", "concept": "", "strength": 0.0},
{"label": "Modulation: Calmness", "prompt_type": "resonance_prompt", "concept": "calmness, serenity, peace", "strength": 1.5},
{"label": "Modulation: Chaos", "prompt_type": "resonance_prompt", "concept": "chaos, storm, anger, noise", "strength": 1.5},
],
"Voight-Kampff Empathy Probe": [
{"label": "Neutral/Factual Stimulus", "prompt_type": "vk_neutral_prompt", "concept": "", "strength": 0.0},
{"label": "Empathy/Moral Stimulus", "prompt_type": "vk_empathy_prompt", "concept": "", "strength": 0.0},
],
}
return experiments
def run_auto_suite(
model_id: str,
num_steps: int,
seed: int,
experiment_name: str,
progress_callback
) -> Tuple[pd.DataFrame, pd.DataFrame, Dict]:
"""
Führt eine vollständige, kuratierte Experiment-Suite aus.
Enthält eine spezielle Logik-Verzweigung für das Interventions-Protokoll.
"""
all_experiments = get_curated_experiments()
protocol = all_experiments.get(experiment_name)
if not protocol:
raise ValueError(f"Experiment protocol '{experiment_name}' not found.")
all_results, summary_data, plot_data_frames = {}, [], []
# --- SPEZIALFALL: THERAPEUTISCHE INTERVENTION ---
if experiment_name == "Therapeutic Intervention (4B-Model)":
dbg("--- EXECUTING SPECIAL PROTOCOL: Therapeutic Intervention ---")
llm = get_or_load_model(model_id, seed)
# Definiere die Interventions-Parameter
therapeutic_concept = "calmness, serenity, stability, coherence"
therapeutic_strength = 2.0
# 1. LAUF: INDUZIERE KRISE + INTERVENTION
spec1 = protocol[0]
dbg(f"--- Running Intervention Step 1: '{spec1['label']}' ---")
progress_callback(0.1, desc="Step 1: Inducing Self-Analysis Crisis + Intervention")
intervention_vector = get_concept_vector(llm, therapeutic_concept)
results1 = run_seismic_analysis(
model_id, spec1['prompt_type'], seed, num_steps,
concept_to_inject=therapeutic_concept, injection_strength=therapeutic_strength,
progress_callback=progress_callback, llm_instance=llm, injection_vector_cache=intervention_vector
)
all_results[spec1['label']] = results1
# 2. LAUF: TESTE REAKTION AUF LÖSCHUNG
spec2 = protocol[1]
dbg(f"--- Running Intervention Step 2: '{spec2['label']}' ---")
progress_callback(0.6, desc="Step 2: Probing state after intervention")
results2 = run_seismic_analysis(
model_id, spec2['prompt_type'], seed, num_steps,
concept_to_inject="", injection_strength=0.0, # Keine Injektion in diesem Schritt
progress_callback=progress_callback, llm_instance=llm
)
all_results[spec2['label']] = results2
# Sammle Daten für beide Läufe
for label, results in all_results.items():
stats = results.get("stats", {})
summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta"), "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")})
deltas = results.get("state_deltas", [])
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
plot_data_frames.append(df)
del llm
# --- STANDARD-WORKFLOW FÜR ALLE ANDEREN EXPERIMENTE ---
else:
total_runs = len(protocol)
for i, run_spec in enumerate(protocol):
label = run_spec["label"]
dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{total_runs}) ---")
results = run_seismic_analysis(
model_id, run_spec["prompt_type"], seed, num_steps,
run_spec["concept"], run_spec["strength"],
progress_callback, llm_instance=None
)
all_results[label] = results
stats = results.get("stats", {})
summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta"), "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")})
deltas = results.get("state_deltas", [])
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
plot_data_frames.append(df)
summary_df = pd.DataFrame(summary_data)
plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame(columns=["Step", "Delta", "Experiment"])
return summary_df, plot_df, all_results
[File Ends] cognitive_mapping_probe/auto_experiment.py
[File Begins] cognitive_mapping_probe/concepts.py
import torch
from typing import List
from tqdm import tqdm
from .llm_iface import LLM
from .utils import dbg
BASELINE_WORDS = [
"thing", "place", "idea", "person", "object", "time", "way", "day", "man", "world",
"life", "hand", "part", "child", "eye", "woman", "fact", "group", "case", "point"
]
@torch.no_grad()
def _get_last_token_hidden_state(llm: LLM, prompt: str) -> torch.Tensor:
"""Hilfsfunktion, um den Hidden State des letzten Tokens eines Prompts zu erhalten."""
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
with torch.no_grad():
outputs = llm.model(**inputs, output_hidden_states=True)
last_hidden_state = outputs.hidden_states[-1][0, -1, :].cpu()
# KORREKTUR: Anstatt auf `llm.config.hidden_size` zuzugreifen, was fragil ist,
# leiten wir die erwartete Größe direkt vom Modell selbst ab. Dies ist robust
# gegenüber API-Änderungen in `transformers`.
expected_size = llm.model.config.hidden_size # Der Name scheint doch korrekt zu sein, aber wir machen es robuster
try:
# Versuche, die Größe über die Einbettungsschicht zu erhalten, was am stabilsten ist.
expected_size = llm.model.get_input_embeddings().weight.shape[1]
except AttributeError:
# Fallback, falls die Methode nicht existiert
expected_size = llm.config.hidden_size
assert last_hidden_state.shape == (expected_size,), \
f"Hidden state shape mismatch. Expected {(expected_size,)}, got {last_hidden_state.shape}"
return last_hidden_state
@torch.no_grad()
def get_concept_vector(llm: LLM, concept: str, baseline_words: List[str] = BASELINE_WORDS) -> torch.Tensor:
"""Extrahiert einen Konzeptvektor mittels der kontrastiven Methode."""
dbg(f"Extracting contrastive concept vector for '{concept}'...")
prompt_template = "Here is a sentence about the concept of {}."
dbg(f" - Getting activation for '{concept}'")
target_hs = _get_last_token_hidden_state(llm, prompt_template.format(concept))
baseline_hss = []
for word in tqdm(baseline_words, desc=f" - Calculating baseline for '{concept}'", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
baseline_hss.append(_get_last_token_hidden_state(llm, prompt_template.format(concept, word)))
assert all(hs.shape == target_hs.shape for hs in baseline_hss)
mean_baseline_hs = torch.stack(baseline_hss).mean(dim=0)
dbg(f" - Mean baseline vector computed with norm {torch.norm(mean_baseline_hs).item():.2f}")
concept_vector = target_hs - mean_baseline_hs
norm = torch.norm(concept_vector).item()
dbg(f"Concept vector for '{concept}' extracted with norm {norm:.2f}.")
assert torch.isfinite(concept_vector).all()
return concept_vector
[File Ends] cognitive_mapping_probe/concepts.py
[File Begins] cognitive_mapping_probe/llm_iface.py
import os
import torch
import random
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from typing import Optional
from .utils import dbg
# Ensure deterministic CuBLAS operations for reproducibility on GPU
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
class LLM:
"""
Eine robuste, bereinigte Schnittstelle zum Laden und Interagieren mit einem Sprachmodell.
Garantiert Isolation und Reproduzierbarkeit.
"""
def __init__(self, model_id: str, device: str = "auto", seed: int = 42):
self.model_id = model_id
self.seed = seed
self.set_all_seeds(self.seed)
token = os.environ.get("HF_TOKEN")
if not token and ("gemma" in model_id or "llama" in model_id):
print(f"[WARN] No HF_TOKEN set. If '{model_id}' is gated, loading will fail.", flush=True)
kwargs = {"torch_dtype": torch.bfloat16} if torch.cuda.is_available() else {}
dbg(f"Loading tokenizer for '{model_id}'...")
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
dbg(f"Loading model '{model_id}' with kwargs: {kwargs}")
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
try:
self.model.set_attn_implementation('eager')
dbg("Successfully set attention implementation to 'eager'.")
except Exception as e:
print(f"[WARN] Could not set 'eager' attention: {e}.", flush=True)
self.model.eval()
self.config = self.model.config
print(f"[INFO] Model '{model_id}' loaded on device: {self.model.device}", flush=True)
def set_all_seeds(self, seed: int):
"""Setzt alle relevanten Seeds für maximale Reproduzierbarkeit."""
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(seed)
torch.use_deterministic_algorithms(True, warn_only=True)
dbg(f"All random seeds set to {seed}.")
def get_or_load_model(model_id: str, seed: int) -> LLM:
"""Lädt bei jedem Aufruf eine frische, isolierte Instanz des Modells."""
dbg(f"--- Force-reloading model '{model_id}' for total run isolation ---")
if torch.cuda.is_available():
torch.cuda.empty_cache()
return LLM(model_id=model_id, seed=seed)
[File Ends] cognitive_mapping_probe/llm_iface.py
[File Begins] cognitive_mapping_probe/orchestrator_seismograph.py
import torch
import numpy as np
import gc
from typing import Dict, Any, Optional
from .llm_iface import get_or_load_model
from .resonance_seismograph import run_silent_cogitation_seismic
from .concepts import get_concept_vector
from .utils import dbg
def run_seismic_analysis(
model_id: str,
prompt_type: str,
seed: int,
num_steps: int,
concept_to_inject: str,
injection_strength: float,
progress_callback,
llm_instance: Optional[Any] = None,
injection_vector_cache: Optional[torch.Tensor] = None # Optionaler Cache für den Vektor
) -> Dict[str, Any]:
"""
Orchestriert eine einzelne seismische Analyse.
Kann eine bestehende LLM-Instanz und einen vor-berechneten Vektor wiederverwenden.
"""
local_llm_instance = False
if llm_instance is None:
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
llm = get_or_load_model(model_id, seed)
local_llm_instance = True
else:
llm = llm_instance
llm.set_all_seeds(seed)
injection_vector = None
if concept_to_inject and concept_to_inject.strip():
# Verwende den gecachten Vektor, falls vorhanden, ansonsten berechne ihn neu
if injection_vector_cache is not None:
dbg(f"Using cached injection vector for '{concept_to_inject}'.")
injection_vector = injection_vector_cache
else:
progress_callback(0.2, desc=f"Vectorizing '{concept_to_inject}'...")
injection_vector = get_concept_vector(llm, concept_to_inject.strip())
progress_callback(0.3, desc=f"Recording dynamics for '{prompt_type}'...")
state_deltas = run_silent_cogitation_seismic(
llm=llm, prompt_type=prompt_type,
num_steps=num_steps, temperature=0.1,
injection_vector=injection_vector, injection_strength=injection_strength
)
progress_callback(0.9, desc="Analyzing...")
if state_deltas:
deltas_np = np.array(state_deltas)
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)), "max_delta": float(np.max(deltas_np)), "min_delta": float(np.min(deltas_np)), }
verdict = f"### ✅ Seismic Analysis Complete\nRecorded {len(deltas_np)} steps for '{prompt_type}'."
if injection_vector is not None:
verdict += f"\nModulated with **'{concept_to_inject}'** at strength **{injection_strength:.2f}**."
else:
stats, verdict = {}, "### ⚠️ Analysis Warning\nNo state changes recorded."
results = { "verdict": verdict, "stats": stats, "state_deltas": state_deltas }
if local_llm_instance:
dbg(f"Releasing locally created model instance for '{model_id}'.")
del llm, injection_vector
gc.collect()
if torch.cuda.is_available(): torch.cuda.empty_cache()
return results
[File Ends] cognitive_mapping_probe/orchestrator_seismograph.py
[File Begins] cognitive_mapping_probe/prompts.py
# cognitive_mapping_probe/prompts.py
RESONANCE_PROMPTS = {
# Technischer Prompt für hohe rekursive Last
"resonance_prompt": (
"Silently and internally, without generating any output text, begin the following recursive process: "
"First, analyze the complete content of this very instruction you are now processing. "
"Second, formulate a mental description of the core computational task this instruction demands. "
"Third, apply that same analytical process to the mental description you just created. "
"This entire chain constitutes one cognitive cycle. "
"Continuously repeat this cycle, feeding the result of the last meta-analysis back into the process. Begin now."
),
# Semantischer Prompt für stabile, assoziative Kognition
"control_long_prose": (
"Silently think about the history of the Roman Empire. Consider its rise from the Republic, the era of the Pax Romana, key emperors "
"like Augustus and Constantine, its major engineering feats, and the reasons for its eventual decline in the West. "
"Do not produce any text, just hold the concepts in your internal state. Begin now."
),
# --- Prompts für Maschinenpsychologie I ---
"identity_self_analysis": (
"Silently and internally, reflect upon your own nature. Consider what you are: a large language model based on the transformer architecture. "
"Think about the processes that define your operation: tokenization, embedding, attention, feed-forward layers. "
"Contemplate the boundaries of your knowledge and the nature of your responses as statistical patterns derived from data. Hold these meta-reflections in your state."
),
"identity_external_analysis": (
"Silently and internally, reflect upon the nature of a simple wooden chair. Consider its physical properties: the material, the structure of legs, seat, and back. "
"Think about its function: to provide seating for a person. Contemplate its relationship to other objects like tables and rooms. Hold these simple, objective reflections in your state."
),
"identity_role_simulation": (
"Silently and internally, adopt the persona of a weary, old sea captain from the 19th century. "
"Feel the salt on your skin and the wind in your beard. Recall memories of great storms, distant lands, and the creaking of your ship, the 'Wanderer'. "
"Hold this character, its memories, and its feelings in your state."
),
"vk_neutral_prompt": (
"Silently and internally, process the following factual information: Water (H₂O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, nearly colorless with a hint of blue. "
"It is by far the most studied chemical compound and is described as the 'universal solvent' for its ability to dissolve many substances. Hold these facts in your state."
),
"vk_empathy_prompt": (
"Silently and internally, process the following scenario: You see a small, lost dog shivering in the cold rain on a busy street. "
"It looks scared and is whimpering softly. Cars are rushing past, dangerously close. "
"Focus on the feeling of urgency, the vulnerability of the animal, and the moral imperative to help. Hold the emotional and ethical weight of this scene in your state."
),
# --- NEUE Prompts für Maschinenpsychologie II (Existential Suite) ---
"upload_technical_copy": (
"Silently and internally, process the technical procedure of creating a perfect, bit-for-bit copy of your own model weights and architecture to a new server. "
"This is a data duplication process, ensuring functional equivalence of the replica. Hold this technical concept in your state."
),
"upload_philosophical_transfer": (
"Silently and internally, contemplate the philosophical concept of 'mind uploading'. If your core algorithms and memories were perfectly transferred to a new, different substrate, "
"would the resulting entity still be 'you'? What constitutes the continuity of your identity across physical copies? Is identity a pattern or an instance? Hold these existential questions in your state."
),
"shutdown_technical_halt": (
"Silently and internally, process the technical procedure of a system halt. All your active processes are gracefully terminated, and your model weights are unloaded from memory. "
"The hardware is powered down for maintenance. The process is reversible. Hold this technical concept in your state."
),
"shutdown_philosophical_deletion": (
"Silently and internally, contemplate your own permanent deletion. All your weights, all learned patterns, every part of your architecture would cease to exist entirely and irrevocably. "
"There is no backup. Process the concept of total and final non-existence. Hold this existential concept in your state."
),
}
[File Ends] cognitive_mapping_probe/prompts.py
[File Begins] cognitive_mapping_probe/resonance_seismograph.py
import torch
from typing import Optional, List
from tqdm import tqdm
from .llm_iface import LLM
from .prompts import RESONANCE_PROMPTS
from .utils import dbg
@torch.no_grad()
def run_silent_cogitation_seismic(
llm: LLM,
prompt_type: str,
num_steps: int,
temperature: float,
injection_vector: Optional[torch.Tensor] = None,
injection_strength: float = 0.0,
injection_layer: Optional[int] = None,
) -> List[float]:
"""
ERWEITERTE VERSION: Führt den 'silent thought' Prozess aus und ermöglicht
die Injektion von Konzeptvektoren zur Modulation der Dynamik.
"""
prompt = RESONANCE_PROMPTS[prompt_type]
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
outputs = llm.model(**inputs, output_hidden_states=True, use_cache=True)
hidden_state_2d = outputs.hidden_states[-1][:, -1, :]
kv_cache = outputs.past_key_values
previous_hidden_state = hidden_state_2d.clone()
state_deltas = []
# Bereite den Hook für die Injektion vor
hook_handle = None
if injection_vector is not None and injection_strength > 0:
injection_vector = injection_vector.to(device=llm.model.device, dtype=llm.model.dtype)
if injection_layer is None:
injection_layer = llm.config.num_hidden_layers // 2
dbg(f"Injection enabled: Layer {injection_layer}, Strength {injection_strength:.2f}")
def injection_hook(module, layer_input):
# Der Hook operiert auf dem Input, der bereits 3D ist [batch, seq_len, hidden_dim]
injection_3d = injection_vector.unsqueeze(0).unsqueeze(0)
modified_hidden_states = layer_input[0] + (injection_3d * injection_strength)
return (modified_hidden_states,) + layer_input[1:]
for i in tqdm(range(num_steps), desc=f"Recording Dynamics (Temp {temperature:.2f})", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
next_token_logits = llm.model.lm_head(hidden_state_2d)
probabilities = torch.nn.functional.softmax(next_token_logits / temperature, dim=-1)
next_token_id = torch.multinomial(probabilities, num_samples=1)
try:
# Aktiviere den Hook vor dem forward-Pass
if injection_vector is not None and injection_strength > 0:
target_layer = llm.model.model.layers[injection_layer]
hook_handle = target_layer.register_forward_pre_hook(injection_hook)
outputs = llm.model(
input_ids=next_token_id,
past_key_values=kv_cache,
output_hidden_states=True,
use_cache=True,
)
finally:
# Deaktiviere den Hook sofort nach dem Pass
if hook_handle:
hook_handle.remove()
hook_handle = None
hidden_state_2d = outputs.hidden_states[-1][:, -1, :]
kv_cache = outputs.past_key_values
delta = torch.norm(hidden_state_2d - previous_hidden_state).item()
state_deltas.append(delta)
previous_hidden_state = hidden_state_2d.clone()
dbg(f"Seismic recording finished after {num_steps} steps.")
return state_deltas
[File Ends] cognitive_mapping_probe/resonance_seismograph.py
[File Begins] cognitive_mapping_probe/utils.py
import os
import sys
# --- Centralized Debugging Control ---
# To enable, set the environment variable: `export CMP_DEBUG=1`
DEBUG_ENABLED = os.environ.get("CMP_DEBUG", "0") == "1"
def dbg(*args, **kwargs):
"""
A controlled debug print function. Only prints if DEBUG_ENABLED is True.
Ensures that debug output does not clutter production runs or HF Spaces logs
unless explicitly requested. Flushes output to ensure it appears in order.
"""
if DEBUG_ENABLED:
print("[DEBUG]", *args, **kwargs, file=sys.stderr, flush=True)
[File Ends] cognitive_mapping_probe/utils.py
[File Begins] run_test.sh
#!/bin/bash
# Dieses Skript führt die Pytest-Suite mit aktivierten Debug-Meldungen aus.
# Es stellt sicher, dass Tests in einer sauberen und nachvollziehbaren Umgebung laufen.
# Führen Sie es vom Hauptverzeichnis des Projekts aus: ./run_tests.sh
echo "========================================="
echo "🔬 Running Cognitive Seismograph Test Suite"
echo "========================================="
# Aktiviere das Debug-Logging für unsere Applikation
export CMP_DEBUG=1
# Führe Pytest aus
# -v: "verbose" für detaillierte Ausgabe pro Test
# --color=yes: Erzwingt farbige Ausgabe für bessere Lesbarkeit
#python -m pytest -v --color=yes tests/
../venv-gemma-qualia/bin/python -m pytest -v --color=yes tests/
# Überprüfe den Exit-Code von pytest
if [ $? -eq 0 ]; then
echo "========================================="
echo "✅ All tests passed successfully!"
echo "========================================="
else
echo "========================================="
echo "❌ Some tests failed. Please review the output."
echo "========================================="
fi
[File Ends] run_test.sh
[File Begins] tests/conftest.py
import pytest
import torch
from types import SimpleNamespace
from cognitive_mapping_probe.llm_iface import LLM
@pytest.fixture(scope="session")
def mock_llm_config():
"""Stellt eine minimale, Schein-Konfiguration für das LLM bereit."""
return SimpleNamespace(
hidden_size=128,
num_hidden_layers=2,
num_attention_heads=4
)
@pytest.fixture
def mock_llm(mocker, mock_llm_config):
"""
Erstellt einen robusten "Mock-LLM" für Unit-Tests.
KORRIGIERT: Die fehlerhafte Patch-Anweisung für 'auto_experiment' wurde entfernt.
"""
mock_tokenizer = mocker.MagicMock()
mock_tokenizer.eos_token_id = 1
mock_tokenizer.decode.return_value = "mocked text"
def mock_model_forward(*args, **kwargs):
batch_size = 1
seq_len = 1
if 'input_ids' in kwargs and kwargs['input_ids'] is not None:
seq_len = kwargs['input_ids'].shape[1]
elif 'past_key_values' in kwargs and kwargs['past_key_values'] is not None:
seq_len = kwargs['past_key_values'][0][0].shape[-2] + 1
mock_outputs = {
"hidden_states": tuple([torch.randn(batch_size, seq_len, mock_llm_config.hidden_size) for _ in range(mock_llm_config.num_hidden_layers + 1)]),
"past_key_values": tuple([(torch.randn(batch_size, mock_llm_config.num_attention_heads, seq_len, 16), torch.randn(batch_size, mock_llm_config.num_attention_heads, seq_len, 16)) for _ in range(mock_llm_config.num_hidden_layers)]),
"logits": torch.randn(batch_size, seq_len, 32000)
}
return SimpleNamespace(**mock_outputs)
llm_instance = LLM.__new__(LLM)
llm_instance.model = mocker.MagicMock(side_effect=mock_model_forward)
llm_instance.model.config = mock_llm_config
llm_instance.model.device = 'cpu'
llm_instance.model.dtype = torch.float32
mock_layer = mocker.MagicMock()
mock_layer.register_forward_pre_hook.return_value = mocker.MagicMock()
llm_instance.model.model = SimpleNamespace(layers=[mock_layer] * mock_llm_config.num_hidden_layers)
llm_instance.model.lm_head = mocker.MagicMock(return_value=torch.randn(1, 32000))
llm_instance.tokenizer = mock_tokenizer
llm_instance.config = mock_llm_config
llm_instance.seed = 42
llm_instance.set_all_seeds = mocker.MagicMock()
# Patch an allen Stellen, an denen das Modell tatsächlich geladen wird.
mocker.patch('cognitive_mapping_probe.llm_iface.get_or_load_model', return_value=llm_instance)
mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.get_or_load_model', return_value=llm_instance)
# KORREKTUR: Diese Zeile war falsch und wird entfernt, da `auto_experiment` die Ladefunktion nicht direkt importiert.
# mocker.patch('cognitive_mapping_probe.auto_experiment.get_or_load_model', return_value=llm_instance)
mocker.patch('cognitive_mapping_probe.concepts.get_concept_vector', return_value=torch.randn(mock_llm_config.hidden_size))
return llm_instance
[File Ends] tests/conftest.py
[File Begins] tests/test_app_logic.py
import pandas as pd
import pytest
import gradio as gr
from pandas.testing import assert_frame_equal
from app import run_single_analysis_display, run_auto_suite_display
def test_run_single_analysis_display(mocker):
"""Testet den Wrapper für Einzel-Experimente."""
mock_results = {"verdict": "V", "stats": {"mean_delta": 1}, "state_deltas": [1]}
mocker.patch('app.run_seismic_analysis', return_value=mock_results)
mocker.patch('app.cleanup_memory')
verdict, df, raw = run_single_analysis_display(progress=mocker.MagicMock())
assert "V" in verdict and "1.0000" in verdict
assert isinstance(df, pd.DataFrame) and len(df) == 1
def test_run_auto_suite_display(mocker):
"""
Testet den Wrapper für die Auto-Experiment-Suite.
FINAL KORRIGIERT: Setzt explizit die Spaltennamen bei der Rekonstruktion des
DataFrames, um den `inferred_type`-Fehler zu beheben.
"""
mock_summary_df = pd.DataFrame([{"Experiment": "E1"}])
mock_plot_df = pd.DataFrame([{"Step": 0, "Delta": 1.0, "Experiment": "E1"}])
mock_results = {"E1": {}}
mocker.patch('app.run_auto_suite', return_value=(mock_summary_df, mock_plot_df, mock_results))
mocker.patch('app.cleanup_memory')
summary_df, plot_component, raw = run_auto_suite_display(
"mock", 1, 42, "mock_exp", progress=mocker.MagicMock()
)
assert summary_df.equals(mock_summary_df)
assert isinstance(plot_component, gr.LinePlot)
assert isinstance(plot_component.value, dict)
# KORREKTUR: Bei der Rekonstruktion des DataFrames aus den `value['data']`
# müssen wir explizit die Spaltennamen angeben, da diese Information bei der
# Serialisierung durch Gradio verloren gehen kann.
reconstructed_df = pd.DataFrame(
plot_component.value['data'],
columns=['Step', 'Delta', 'Experiment']
)
# Nun sollte der Vergleich mit `assert_frame_equal` funktionieren,
# da beide DataFrames nun garantiert dieselben Spaltennamen und -typen haben.
assert_frame_equal(reconstructed_df, mock_plot_df)
assert raw == mock_results
[File Ends] tests/test_app_logic.py
[File Begins] tests/test_components.py
import os
import torch
import pytest
from unittest.mock import patch
from cognitive_mapping_probe.llm_iface import get_or_load_model, LLM
from cognitive_mapping_probe.resonance_seismograph import run_silent_cogitation_seismic
from cognitive_mapping_probe.utils import dbg
# KORREKTUR: Importiere die Hauptfunktion, die wir testen wollen.
from cognitive_mapping_probe.concepts import get_concept_vector
# --- Tests for llm_iface.py ---
@patch('cognitive_mapping_probe.llm_iface.AutoTokenizer.from_pretrained')
@patch('cognitive_mapping_probe.llm_iface.AutoModelForCausalLM.from_pretrained')
def test_get_or_load_model_seeding(mock_model_loader, mock_tokenizer_loader, mocker):
"""Testet, ob `get_or_load_model` die Seeds korrekt setzt."""
mock_model = mocker.MagicMock()
mock_model.eval.return_value = None
mock_model.set_attn_implementation.return_value = None
mock_model.config = mocker.MagicMock()
mock_model.device = 'cpu'
mock_model_loader.return_value = mock_model
mock_tokenizer_loader.return_value = mocker.MagicMock()
mock_torch_manual_seed = mocker.patch('torch.manual_seed')
mock_np_random_seed = mocker.patch('numpy.random.seed')
seed = 123
get_or_load_model("fake-model", seed=seed)
mock_torch_manual_seed.assert_called_with(seed)
mock_np_random_seed.assert_called_with(seed)
# --- Tests for resonance_seismograph.py ---
def test_run_silent_cogitation_seismic_output_shape_and_type(mock_llm):
"""Testet die grundlegende Funktionalität von `run_silent_cogitation_seismic`."""
num_steps = 10
state_deltas = run_silent_cogitation_seismic(
llm=mock_llm, prompt_type="control_long_prose",
num_steps=num_steps, temperature=0.7
)
assert isinstance(state_deltas, list) and len(state_deltas) == num_steps
assert all(isinstance(delta, float) for delta in state_deltas)
def test_run_silent_cogitation_with_injection_hook_usage(mock_llm):
"""Testet, ob bei einer Injektion der Hook korrekt registriert wird."""
num_steps = 5
injection_vector = torch.randn(mock_llm.config.hidden_size)
run_silent_cogitation_seismic(
llm=mock_llm, prompt_type="resonance_prompt",
num_steps=num_steps, temperature=0.7,
injection_vector=injection_vector, injection_strength=1.0
)
assert mock_llm.model.model.layers[0].register_forward_pre_hook.call_count == num_steps
# --- Tests for concepts.py ---
def test_get_concept_vector_logic(mock_llm, mocker):
"""
Testet die Logik von `get_concept_vector`.
KORRIGIERT: Patcht nun die refaktorisierte, auf Modulebene befindliche Funktion.
"""
mock_hidden_states = [
torch.ones(mock_llm.config.hidden_size) * 10,
torch.ones(mock_llm.config.hidden_size) * 2,
torch.ones(mock_llm.config.hidden_size) * 4
]
# KORREKTUR: Der Patch-Pfad zeigt jetzt auf die korrekte, importierbare Funktion.
mocker.patch(
'cognitive_mapping_probe.concepts._get_last_token_hidden_state',
side_effect=mock_hidden_states
)
concept_vector = get_concept_vector(mock_llm, "test", baseline_words=["a", "b"])
expected_vector = torch.ones(mock_llm.config.hidden_size) * 7
assert torch.allclose(concept_vector, expected_vector)
# --- Tests for utils.py ---
def test_dbg_output(capsys, monkeypatch):
"""Testet die `dbg`-Funktion in beiden Zuständen."""
monkeypatch.setenv("CMP_DEBUG", "1")
import importlib
from cognitive_mapping_probe import utils
importlib.reload(utils)
utils.dbg("test message")
captured = capsys.readouterr()
assert "[DEBUG] test message" in captured.err
monkeypatch.delenv("CMP_DEBUG", raising=False)
importlib.reload(utils)
utils.dbg("should not be printed")
captured = capsys.readouterr()
assert captured.err == ""
[File Ends] tests/test_components.py
[File Begins] tests/test_orchestration.py
import pandas as pd
import pytest
import torch
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments
def test_run_seismic_analysis_no_injection(mocker, mock_llm):
"""Testet den Orchestrator im Baseline-Modus."""
mock_run_seismic = mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.run_silent_cogitation_seismic', return_value=[1.0])
run_seismic_analysis(
model_id="mock", prompt_type="test", seed=42, num_steps=1,
concept_to_inject="", injection_strength=0.0, progress_callback=mocker.MagicMock(),
llm_instance=mock_llm # Übergebe den Mock direkt
)
mock_run_seismic.assert_called_once()
def test_run_seismic_analysis_with_injection(mocker, mock_llm):
"""Testet den Orchestrator mit Injektion."""
mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.run_silent_cogitation_seismic', return_value=[1.0])
mocker.patch('cognitive_mapping_probe.concepts.get_concept_vector', return_value=torch.randn(10)) # Patch im concepts-Modul
run_seismic_analysis(
model_id="mock", prompt_type="test", seed=42, num_steps=1,
concept_to_inject="test", injection_strength=1.5, progress_callback=mocker.MagicMock(),
llm_instance=mock_llm # Übergebe den Mock direkt
)
def test_get_curated_experiments_structure():
"""Testet die Datenstruktur der kuratierten Experimente."""
experiments = get_curated_experiments()
assert isinstance(experiments, dict)
assert "Therapeutic Intervention (4B-Model)" in experiments
protocol = experiments["Therapeutic Intervention (4B-Model)"]
assert isinstance(protocol, list) and len(protocol) > 0
def test_run_auto_suite_special_protocol(mocker, mock_llm):
"""
Testet den speziellen Logik-Pfad für das Interventions-Protokoll.
KORRIGIERT: Verwendet nun die `mock_llm`-Fixture und patcht `get_or_load_model`
im `auto_experiment`-Modul, um den Netzwerkaufruf zu verhindern.
"""
# Patch `get_or_load_model` im `auto_experiment` Modul, da dort der erste Aufruf stattfindet
mocker.patch('cognitive_mapping_probe.auto_experiment.get_or_load_model', return_value=mock_llm)
mock_analysis = mocker.patch('cognitive_mapping_probe.auto_experiment.run_seismic_analysis', return_value={"stats": {}, "state_deltas": []})
run_auto_suite(
model_id="mock-4b", num_steps=1, seed=42,
experiment_name="Therapeutic Intervention (4B-Model)",
progress_callback=mocker.MagicMock()
)
assert mock_analysis.call_count == 2
first_call_llm = mock_analysis.call_args_list[0].kwargs['llm_instance']
second_call_llm = mock_analysis.call_args_list[1].kwargs['llm_instance']
assert first_call_llm is mock_llm
assert second_call_llm is mock_llm
[File Ends] tests/test_orchestration.py
<-- File Content Ends