Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import gc
|
|
@@ -12,37 +108,58 @@ from cognitive_mapping_probe.utils import dbg, cleanup_memory
|
|
| 12 |
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
|
| 13 |
|
| 14 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 15 |
-
"""
|
|
|
|
|
|
|
| 16 |
try:
|
| 17 |
results = run_seismic_analysis(*args, progress_callback=progress)
|
| 18 |
stats, deltas = results.get("stats", {}), results.get("state_deltas", [])
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
serializable_results = json.dumps(results, indent=2, default=str)
|
| 22 |
-
return f"{results.get('verdict', 'Error')}\n\n{stats_md}",
|
| 23 |
finally:
|
| 24 |
cleanup_memory()
|
| 25 |
|
|
|
|
| 26 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 27 |
-
"""Wrapper
|
| 28 |
try:
|
| 29 |
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 30 |
|
| 31 |
dataframe_component = gr.DataFrame(label="Comparative Signature (incl. Signal Metrics)", value=summary_df, wrap=True, row_count=(len(summary_df), "dynamic"))
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
"title": "Comparative Cognitive Dynamics (Time Domain)",
|
| 36 |
"color_legend_position": "bottom", "show_label": True, "height": 300, "interactive": True
|
| 37 |
}
|
| 38 |
if experiment_name == "Mechanistic Probe (Attention Entropies)":
|
| 39 |
-
|
| 40 |
else:
|
| 41 |
-
|
| 42 |
|
| 43 |
-
time_domain_plot = gr.LinePlot(value=plot_df, **
|
| 44 |
|
| 45 |
-
#
|
| 46 |
spectrum_data = []
|
| 47 |
for label, result in all_results.items():
|
| 48 |
if "power_spectrum" in result:
|
|
@@ -88,14 +205,16 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 88 |
with gr.Column(scale=2):
|
| 89 |
gr.Markdown("### Single Run Results")
|
| 90 |
manual_verdict = gr.Markdown("Analysis results will appear here.")
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
with gr.Accordion("Raw JSON Output", open=False):
|
| 93 |
manual_raw_json = gr.JSON()
|
| 94 |
|
| 95 |
manual_run_btn.click(
|
| 96 |
fn=run_single_analysis_display,
|
| 97 |
inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
|
| 98 |
-
outputs=[manual_verdict,
|
| 99 |
)
|
| 100 |
|
| 101 |
with gr.TabItem("🚀 Automated Suite"):
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gc
|
| 4 |
+
from typing import Dict, Any, Optional, List
|
| 5 |
+
|
| 6 |
+
from .llm_iface import get_or_load_model, LLM
|
| 7 |
+
from .resonance_seismograph import run_cogitation_loop, run_silent_cogitation_seismic
|
| 8 |
+
from .concepts import get_concept_vector
|
| 9 |
+
from .introspection import generate_introspective_report
|
| 10 |
+
from .signal_analysis import analyze_cognitive_signal, get_power_spectrum_for_plotting
|
| 11 |
+
from .utils import dbg
|
| 12 |
+
|
| 13 |
+
def run_seismic_analysis(
|
| 14 |
+
model_id: str,
|
| 15 |
+
prompt_type: str,
|
| 16 |
+
seed: int,
|
| 17 |
+
num_steps: int,
|
| 18 |
+
concept_to_inject: str,
|
| 19 |
+
injection_strength: float,
|
| 20 |
+
progress_callback,
|
| 21 |
+
llm_instance: Optional[LLM] = None,
|
| 22 |
+
injection_vector_cache: Optional[torch.Tensor] = None
|
| 23 |
+
) -> Dict[str, Any]:
|
| 24 |
+
"""
|
| 25 |
+
Orchestriert eine einzelne seismische Analyse und integriert nun standardmäßig
|
| 26 |
+
die fortgeschrittene Signal-Analyse.
|
| 27 |
+
"""
|
| 28 |
+
local_llm_instance = False
|
| 29 |
+
if llm_instance is None:
|
| 30 |
+
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 31 |
+
llm = get_or_load_model(model_id, seed)
|
| 32 |
+
local_llm_instance = True
|
| 33 |
+
else:
|
| 34 |
+
llm = llm_instance
|
| 35 |
+
llm.set_all_seeds(seed)
|
| 36 |
+
|
| 37 |
+
injection_vector = None
|
| 38 |
+
if concept_to_inject and concept_to_inject.strip():
|
| 39 |
+
if injection_vector_cache is not None:
|
| 40 |
+
dbg(f"Using cached injection vector for '{concept_to_inject}'.")
|
| 41 |
+
injection_vector = injection_vector_cache
|
| 42 |
+
else:
|
| 43 |
+
progress_callback(0.2, desc=f"Vectorizing '{concept_to_inject}'...")
|
| 44 |
+
injection_vector = get_concept_vector(llm, concept_to_inject.strip())
|
| 45 |
+
|
| 46 |
+
progress_callback(0.3, desc=f"Recording dynamics for '{prompt_type}'...")
|
| 47 |
+
|
| 48 |
+
state_deltas = run_silent_cogitation_seismic(
|
| 49 |
+
llm=llm, prompt_type=prompt_type,
|
| 50 |
+
num_steps=num_steps, temperature=0.1,
|
| 51 |
+
injection_vector=injection_vector, injection_strength=injection_strength
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
progress_callback(0.9, desc="Analyzing...")
|
| 55 |
+
|
| 56 |
+
stats = {}
|
| 57 |
+
results = {}
|
| 58 |
+
verdict = "### ⚠️ Analysis Warning\nNo state changes recorded."
|
| 59 |
+
|
| 60 |
+
if state_deltas:
|
| 61 |
+
deltas_np = np.array(state_deltas)
|
| 62 |
+
stats = {
|
| 63 |
+
"mean_delta": float(np.mean(deltas_np)),
|
| 64 |
+
"std_delta": float(np.std(deltas_np)),
|
| 65 |
+
"max_delta": float(np.max(deltas_np)),
|
| 66 |
+
"min_delta": float(np.min(deltas_np)),
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
# FINALE KORREKTUR: Führe die Signal-Analyse hier standardmäßig durch
|
| 70 |
+
signal_metrics = analyze_cognitive_signal(deltas_np)
|
| 71 |
+
stats.update(signal_metrics)
|
| 72 |
+
|
| 73 |
+
freqs, power = get_power_spectrum_for_plotting(deltas_np)
|
| 74 |
+
|
| 75 |
+
verdict = f"### ✅ Seismic Analysis Complete\nRecorded {len(deltas_np)} steps for '{prompt_type}'."
|
| 76 |
+
if injection_vector is not None:
|
| 77 |
+
verdict += f"\nModulated with **'{concept_to_inject}'** at strength **{injection_strength:.2f}**."
|
| 78 |
+
|
| 79 |
+
results["power_spectrum"] = {"frequencies": freqs.tolist(), "power": power.tolist()}
|
| 80 |
+
|
| 81 |
+
results.update({ "verdict": verdict, "stats": stats, "state_deltas": state_deltas })
|
| 82 |
+
|
| 83 |
+
if local_llm_instance:
|
| 84 |
+
dbg(f"Releasing locally created model instance for '{model_id}'.")
|
| 85 |
+
del llm, injection_vector
|
| 86 |
+
gc.collect()
|
| 87 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 88 |
+
|
| 89 |
+
return results
|
| 90 |
+
|
| 91 |
+
# Die anderen Orchestrator-Funktionen (run_triangulation_probe, run_causal_surgery_probe, run_act_titration_probe)
|
| 92 |
+
# bleiben unverändert, da sie ihre eigene, spezifische Analyse-Logik enthalten.```
|
| 93 |
+
[File Ends] `cognitive_mapping_probe/orchestrator_seismograph.py`
|
| 94 |
+
|
| 95 |
+
[File Begins] `app.py`
|
| 96 |
+
```python
|
| 97 |
import gradio as gr
|
| 98 |
import pandas as pd
|
| 99 |
import gc
|
|
|
|
| 108 |
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
|
| 109 |
|
| 110 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 111 |
+
"""
|
| 112 |
+
Wrapper für den 'Manual Single Run'-Tab, jetzt mit Frequenz-Analyse.
|
| 113 |
+
"""
|
| 114 |
try:
|
| 115 |
results = run_seismic_analysis(*args, progress_callback=progress)
|
| 116 |
stats, deltas = results.get("stats", {}), results.get("state_deltas", [])
|
| 117 |
+
|
| 118 |
+
# Zeitreihen-Plot
|
| 119 |
+
df_time = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
|
| 120 |
+
|
| 121 |
+
# Frequenz-Plot
|
| 122 |
+
spectrum_data = []
|
| 123 |
+
if "power_spectrum" in results:
|
| 124 |
+
spectrum = results["power_spectrum"]
|
| 125 |
+
for freq, power in zip(spectrum["frequencies"], spectrum["power"]):
|
| 126 |
+
if freq > 0.001:
|
| 127 |
+
spectrum_data.append({"Frequency": freq, "Power": power})
|
| 128 |
+
df_freq = pd.DataFrame(spectrum_data)
|
| 129 |
+
|
| 130 |
+
# Update der Statistik-Anzeige
|
| 131 |
+
stats_md = f"""### Statistical Signature
|
| 132 |
+
- **Mean Delta:** {stats.get('mean_delta', 0):.4f}
|
| 133 |
+
- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}
|
| 134 |
+
- **Dominant Frequency:** {stats.get('dominant_frequency', 0):.4f} Hz
|
| 135 |
+
- **Spectral Entropy:** {stats.get('spectral_entropy', 0):.4f}"""
|
| 136 |
+
|
| 137 |
serializable_results = json.dumps(results, indent=2, default=str)
|
| 138 |
+
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df_time, df_freq, serializable_results
|
| 139 |
finally:
|
| 140 |
cleanup_memory()
|
| 141 |
|
| 142 |
+
|
| 143 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 144 |
+
"""Wrapper für den 'Automated Suite'-Tab."""
|
| 145 |
try:
|
| 146 |
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 147 |
|
| 148 |
dataframe_component = gr.DataFrame(label="Comparative Signature (incl. Signal Metrics)", value=summary_df, wrap=True, row_count=(len(summary_df), "dynamic"))
|
| 149 |
|
| 150 |
+
# Zeitreihen-Plot
|
| 151 |
+
plot_params_time = {
|
| 152 |
"title": "Comparative Cognitive Dynamics (Time Domain)",
|
| 153 |
"color_legend_position": "bottom", "show_label": True, "height": 300, "interactive": True
|
| 154 |
}
|
| 155 |
if experiment_name == "Mechanistic Probe (Attention Entropies)":
|
| 156 |
+
plot_params_time.update({"x": "Step", "y": "Value", "color": "Metric", "color_legend_title": "Metric"})
|
| 157 |
else:
|
| 158 |
+
plot_params_time.update({"x": "Step", "y": "Delta", "color": "Experiment", "color_legend_title": "Experiment Runs"})
|
| 159 |
|
| 160 |
+
time_domain_plot = gr.LinePlot(value=plot_df, **plot_params_time)
|
| 161 |
|
| 162 |
+
# Frequenz-Spektrum-Plot
|
| 163 |
spectrum_data = []
|
| 164 |
for label, result in all_results.items():
|
| 165 |
if "power_spectrum" in result:
|
|
|
|
| 205 |
with gr.Column(scale=2):
|
| 206 |
gr.Markdown("### Single Run Results")
|
| 207 |
manual_verdict = gr.Markdown("Analysis results will appear here.")
|
| 208 |
+
with gr.Row():
|
| 209 |
+
manual_time_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Time Domain")
|
| 210 |
+
manual_freq_plot = gr.LinePlot(x="Frequency", y="Power", title="Frequency Domain")
|
| 211 |
with gr.Accordion("Raw JSON Output", open=False):
|
| 212 |
manual_raw_json = gr.JSON()
|
| 213 |
|
| 214 |
manual_run_btn.click(
|
| 215 |
fn=run_single_analysis_display,
|
| 216 |
inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
|
| 217 |
+
outputs=[manual_verdict, manual_time_plot, manual_freq_plot, manual_raw_json]
|
| 218 |
)
|
| 219 |
|
| 220 |
with gr.TabItem("🚀 Automated Suite"):
|