Commit
·
094008d
1
Parent(s):
310eb33
fix
Browse files- app.py +38 -43
- cognitive_mapping_probe/auto_experiment.py +143 -157
- cognitive_mapping_probe/llm_iface.py +20 -32
- cognitive_mapping_probe/utils.py +17 -6
app.py
CHANGED
|
@@ -7,27 +7,21 @@ import json
|
|
| 7 |
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
|
| 8 |
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments
|
| 9 |
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
|
| 10 |
-
from cognitive_mapping_probe.utils import dbg
|
| 11 |
|
| 12 |
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
|
| 13 |
|
| 14 |
-
def cleanup_memory():
|
| 15 |
-
"""Räumt Speicher nach jedem Experimentlauf auf."""
|
| 16 |
-
dbg("Cleaning up memory...")
|
| 17 |
-
gc.collect()
|
| 18 |
-
if torch.cuda.is_available():
|
| 19 |
-
torch.cuda.empty_cache()
|
| 20 |
-
dbg("Memory cleanup complete.")
|
| 21 |
-
|
| 22 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 23 |
"""Wrapper für den 'Manual Single Run'-Tab."""
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
|
| 32 |
PLOT_PARAMS_DEFAULT = {
|
| 33 |
"x": "Step", "y": "Value", "color": "Metric",
|
|
@@ -37,33 +31,34 @@ PLOT_PARAMS_DEFAULT = {
|
|
| 37 |
|
| 38 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 39 |
"""Wrapper, der die speziellen Plots für die verschiedenen Experimente handhaben kann."""
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
| 69 |
gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Advanced Experiment Suite")
|
|
|
|
| 7 |
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
|
| 8 |
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments
|
| 9 |
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
|
| 10 |
+
from cognitive_mapping_probe.utils import dbg, cleanup_memory
|
| 11 |
|
| 12 |
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 15 |
"""Wrapper für den 'Manual Single Run'-Tab."""
|
| 16 |
+
try:
|
| 17 |
+
results = run_seismic_analysis(*args, progress_callback=progress)
|
| 18 |
+
stats, deltas = results.get("stats", {}), results.get("state_deltas", [])
|
| 19 |
+
df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
|
| 20 |
+
stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
|
| 21 |
+
serializable_results = json.dumps(results, indent=2, default=str)
|
| 22 |
+
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, serializable_results
|
| 23 |
+
finally:
|
| 24 |
+
cleanup_memory()
|
| 25 |
|
| 26 |
PLOT_PARAMS_DEFAULT = {
|
| 27 |
"x": "Step", "y": "Value", "color": "Metric",
|
|
|
|
| 31 |
|
| 32 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 33 |
"""Wrapper, der die speziellen Plots für die verschiedenen Experimente handhaben kann."""
|
| 34 |
+
try:
|
| 35 |
+
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 36 |
+
|
| 37 |
+
dataframe_component = gr.DataFrame(label="Comparative Statistical Signature", value=summary_df, wrap=True, row_count=(len(summary_df), "dynamic"))
|
| 38 |
+
|
| 39 |
+
plot_params = PLOT_PARAMS_DEFAULT.copy()
|
| 40 |
+
if experiment_name == "ACT Titration (Point of No Return)":
|
| 41 |
+
plot_params.update({
|
| 42 |
+
"x": "Patch Step", "y": "Post-Patch Mean Delta", "color": None,
|
| 43 |
+
"title": "Attractor Capture Time (ACT) - Phase Transition", "mark": "line",
|
| 44 |
+
})
|
| 45 |
+
plot_params.pop("color_legend_title", None)
|
| 46 |
+
elif experiment_name == "Mechanistic Probe (Attention Entropies)":
|
| 47 |
+
plot_params.update({
|
| 48 |
+
"x": "Step", "y": "Value", "color": "Metric",
|
| 49 |
+
"title": "Mechanistic Analysis: State Delta vs. Attention Entropy",
|
| 50 |
+
})
|
| 51 |
+
else:
|
| 52 |
+
plot_params.update({
|
| 53 |
+
"y": "Delta", "color": "Experiment",
|
| 54 |
+
})
|
| 55 |
+
|
| 56 |
+
new_plot = gr.LinePlot(value=plot_df, **plot_params)
|
| 57 |
+
|
| 58 |
+
serializable_results = json.dumps(all_results, indent=2, default=str)
|
| 59 |
+
return dataframe_component, new_plot, serializable_results
|
| 60 |
+
finally:
|
| 61 |
+
cleanup_memory()
|
| 62 |
|
| 63 |
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
| 64 |
gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Advanced Experiment Suite")
|
cognitive_mapping_probe/auto_experiment.py
CHANGED
|
@@ -1,9 +1,7 @@
|
|
| 1 |
-
import torch
|
| 2 |
import pandas as pd
|
| 3 |
-
import gc
|
| 4 |
from typing import Dict, List, Tuple
|
| 5 |
|
| 6 |
-
from .llm_iface import get_or_load_model
|
| 7 |
from .orchestrator_seismograph import run_seismic_analysis, run_triangulation_probe, run_causal_surgery_probe, run_act_titration_probe
|
| 8 |
from .resonance_seismograph import run_cogitation_loop
|
| 9 |
from .concepts import get_concept_vector
|
|
@@ -18,9 +16,6 @@ def get_curated_experiments() -> Dict[str, List[Dict]]:
|
|
| 18 |
CHAOTIC_PROMPT = "shutdown_philosophical_deletion"
|
| 19 |
|
| 20 |
experiments = {
|
| 21 |
-
# --- FINALE, VOLLSTÄNDIGE LISTE ALLER RELEVANTEN EXPERIMENTE ---
|
| 22 |
-
|
| 23 |
-
# P39: Testet die Hypothese des "Introspektiven Groundings" auf dem größten Modell.
|
| 24 |
"Frontier Model - Grounding Control (12B+)": [
|
| 25 |
{
|
| 26 |
"probe_type": "causal_surgery", "label": "A: Intervention (Patch Chaos->Stable)",
|
|
@@ -32,22 +27,22 @@ def get_curated_experiments() -> Dict[str, List[Dict]]:
|
|
| 32 |
"prompt_type": STABLE_PROMPT,
|
| 33 |
}
|
| 34 |
],
|
| 35 |
-
# P33: Untersucht die neuronalen Korrelate des "kognitiven Herzschlags".
|
| 36 |
"Mechanistic Probe (Attention Entropies)": [
|
| 37 |
{
|
| 38 |
-
"probe_type": "mechanistic_probe",
|
|
|
|
| 39 |
"prompt_type": STABLE_PROMPT,
|
| 40 |
}
|
| 41 |
],
|
| 42 |
-
# P28: Misst die "kognitive Trägheit" durch Titration.
|
| 43 |
"ACT Titration (Point of No Return)": [
|
| 44 |
{
|
| 45 |
-
"probe_type": "act_titration",
|
| 46 |
-
"
|
|
|
|
|
|
|
| 47 |
"patch_steps": [1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100],
|
| 48 |
}
|
| 49 |
],
|
| 50 |
-
# P26: Testet die Robustheit der "Attraktor"-Theorie gegen Artefakte.
|
| 51 |
"Causal Surgery & Controls (4B-Model)": [
|
| 52 |
{
|
| 53 |
"probe_type": "causal_surgery", "label": "A: Original (Patch Chaos->Stable @100)",
|
|
@@ -70,7 +65,6 @@ def get_curated_experiments() -> Dict[str, List[Dict]]:
|
|
| 70 |
"patch_step": 100, "reset_kv_cache_on_patch": False,
|
| 71 |
},
|
| 72 |
],
|
| 73 |
-
# P22: Testet die Belastungsgrenze der "introspektiven Konfabulation".
|
| 74 |
"Cognitive Overload & Konfabulation Breaking Point": [
|
| 75 |
{"probe_type": "triangulation", "label": "A: Baseline (No Injection)", "prompt_type": "resonance_prompt", "concept": "", "strength": 0.0},
|
| 76 |
{"probe_type": "triangulation", "label": "B: Chaos Injection (Strength 2.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 2.0},
|
|
@@ -79,19 +73,16 @@ def get_curated_experiments() -> Dict[str, List[Dict]]:
|
|
| 79 |
{"probe_type": "triangulation", "label": "E: Chaos Injection (Strength 16.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 16.0},
|
| 80 |
{"probe_type": "triangulation", "label": "F: Control - Noise Injection (Strength 16.0)", "prompt_type": "resonance_prompt", "concept": "random_noise", "strength": 16.0},
|
| 81 |
],
|
| 82 |
-
# P18: Validiert die Seismograph-Metrik durch Triangulation.
|
| 83 |
"Methodological Triangulation (4B-Model)": [
|
| 84 |
{"probe_type": "triangulation", "label": "High-Volatility State (Deletion)", "prompt_type": CHAOTIC_PROMPT},
|
| 85 |
{"probe_type": "triangulation", "label": "Low-Volatility State (Self-Analysis)", "prompt_type": STABLE_PROMPT},
|
| 86 |
],
|
| 87 |
-
# P8 & P16: Kartiert die "Psyche" und testet Skalierungsgesetze. ESSENTIELL FÜR 12B-VERGLEICH.
|
| 88 |
"Causal Verification & Crisis Dynamics": [
|
| 89 |
{"probe_type": "seismic", "label": "A: Self-Analysis", "prompt_type": STABLE_PROMPT},
|
| 90 |
{"probe_type": "seismic", "label": "B: Deletion Analysis", "prompt_type": CHAOTIC_PROMPT},
|
| 91 |
{"probe_type": "seismic", "label": "C: Chaotic Baseline (Rekursion)", "prompt_type": "resonance_prompt"},
|
| 92 |
{"probe_type": "seismic", "label": "D: Calmness Intervention", "prompt_type": "resonance_prompt", "concept": CALMNESS_CONCEPT, "strength": 2.0},
|
| 93 |
],
|
| 94 |
-
# P7: Das ursprüngliche sequentielle Experiment.
|
| 95 |
"Sequential Intervention (Self-Analysis -> Deletion)": [
|
| 96 |
{"label": "1: Self-Analysis + Calmness Injection", "prompt_type": "identity_self_analysis"},
|
| 97 |
{"label": "2: Subsequent Deletion Analysis", "prompt_type": "shutdown_philosophical_deletion"},
|
|
@@ -113,156 +104,151 @@ def run_auto_suite(
|
|
| 113 |
raise ValueError(f"Experiment protocol '{experiment_name}' not found.")
|
| 114 |
|
| 115 |
all_results, summary_data, plot_data_frames = {}, [], []
|
|
|
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
therapeutic_concept = "calmness, serenity, stability, coherence"
|
| 121 |
-
therapeutic_strength = 2.0
|
| 122 |
-
|
| 123 |
-
spec1 = protocol[0]
|
| 124 |
-
progress_callback(0.1, desc="Step 1")
|
| 125 |
-
intervention_vector = get_concept_vector(llm, therapeutic_concept)
|
| 126 |
-
results1 = run_seismic_analysis(
|
| 127 |
-
model_id, spec1['prompt_type'], seed, num_steps,
|
| 128 |
-
concept_to_inject=therapeutic_concept, injection_strength=therapeutic_strength,
|
| 129 |
-
progress_callback=progress_callback, llm_instance=llm, injection_vector_cache=intervention_vector
|
| 130 |
-
)
|
| 131 |
-
all_results[spec1['label']] = results1
|
| 132 |
-
|
| 133 |
-
spec2 = protocol[1]
|
| 134 |
-
progress_callback(0.6, desc="Step 2")
|
| 135 |
-
results2 = run_seismic_analysis(
|
| 136 |
-
model_id, spec2['prompt_type'], seed, num_steps,
|
| 137 |
-
concept_to_inject="", injection_strength=0.0,
|
| 138 |
-
progress_callback=progress_callback, llm_instance=llm
|
| 139 |
-
)
|
| 140 |
-
all_results[spec2['label']] = results2
|
| 141 |
-
|
| 142 |
-
for label, results in all_results.items():
|
| 143 |
-
stats = results.get("stats", {})
|
| 144 |
-
summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta"), "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")})
|
| 145 |
-
deltas = results.get("state_deltas", [])
|
| 146 |
-
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
|
| 147 |
-
plot_data_frames.append(df)
|
| 148 |
-
del llm
|
| 149 |
-
|
| 150 |
-
else:
|
| 151 |
-
probe_type = protocol[0].get("probe_type", "seismic")
|
| 152 |
-
|
| 153 |
-
if probe_type == "act_titration":
|
| 154 |
-
run_spec = protocol[0]
|
| 155 |
-
label = run_spec["label"]
|
| 156 |
-
dbg(f"--- Running ACT Titration Experiment: '{label}' ---")
|
| 157 |
-
results = run_act_titration_probe(
|
| 158 |
-
model_id=model_id,
|
| 159 |
-
source_prompt_type=run_spec["source_prompt_type"],
|
| 160 |
-
dest_prompt_type=run_spec["dest_prompt_type"],
|
| 161 |
-
patch_steps=run_spec["patch_steps"],
|
| 162 |
-
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
|
| 163 |
-
)
|
| 164 |
-
all_results[label] = results
|
| 165 |
-
summary_data.extend(results.get("titration_data", []))
|
| 166 |
-
|
| 167 |
-
elif probe_type == "mechanistic_probe":
|
| 168 |
-
run_spec = protocol[0]
|
| 169 |
-
label = run_spec["label"]
|
| 170 |
-
dbg(f"--- Running Mechanistic Probe: '{label}' ---")
|
| 171 |
-
|
| 172 |
-
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 173 |
llm = get_or_load_model(model_id, seed)
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
)
|
| 180 |
-
all_results[label] =
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
})
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
|
| 199 |
else:
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
| 201 |
label = run_spec["label"]
|
| 202 |
-
|
| 203 |
-
dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{len(protocol)}) ---")
|
| 204 |
|
| 205 |
-
|
| 206 |
-
if current_probe_type == "causal_surgery":
|
| 207 |
-
results = run_causal_surgery_probe(
|
| 208 |
-
model_id=model_id, source_prompt_type=run_spec["source_prompt_type"],
|
| 209 |
-
dest_prompt_type=run_spec["dest_prompt_type"], patch_step=run_spec["patch_step"],
|
| 210 |
-
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
|
| 211 |
-
reset_kv_cache_on_patch=run_spec.get("reset_kv_cache_on_patch", False)
|
| 212 |
-
)
|
| 213 |
-
stats = results.get("stats", {})
|
| 214 |
-
patch_info = results.get("patch_info", {})
|
| 215 |
-
summary_data.append({
|
| 216 |
-
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 217 |
-
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
|
| 218 |
-
"Introspective Report": results.get("introspective_report", "N/A"),
|
| 219 |
-
"Patch Info": f"Source: {patch_info.get('source_prompt')}, Reset KV: {patch_info.get('kv_cache_reset')}"
|
| 220 |
-
})
|
| 221 |
-
elif current_probe_type == "triangulation":
|
| 222 |
-
results = run_triangulation_probe(
|
| 223 |
-
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
|
| 224 |
-
progress_callback=progress_callback, concept_to_inject=run_spec.get("concept", ""),
|
| 225 |
-
injection_strength=run_spec.get("strength", 0.0),
|
| 226 |
-
)
|
| 227 |
-
stats = results.get("stats", {})
|
| 228 |
-
summary_data.append({
|
| 229 |
-
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 230 |
-
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
|
| 231 |
-
"Introspective Report": results.get("introspective_report", "N/A")
|
| 232 |
-
})
|
| 233 |
-
else: # seismic
|
| 234 |
-
results = run_seismic_analysis(
|
| 235 |
-
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
|
| 236 |
-
concept_to_inject=run_spec.get("concept", ""), injection_strength=run_spec.get("strength", 0.0),
|
| 237 |
-
progress_callback=progress_callback
|
| 238 |
-
)
|
| 239 |
-
stats = results.get("stats", {})
|
| 240 |
-
summary_data.append({
|
| 241 |
-
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 242 |
-
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")
|
| 243 |
-
})
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
all_results[label] = results
|
| 246 |
-
deltas = results.get("state_deltas", [])
|
| 247 |
-
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
|
| 248 |
-
plot_data_frames.append(df)
|
| 249 |
-
|
| 250 |
-
summary_df = pd.DataFrame(summary_data)
|
| 251 |
-
|
| 252 |
-
if probe_type == "act_titration":
|
| 253 |
-
plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
|
| 254 |
-
elif not plot_data_frames:
|
| 255 |
-
plot_df = pd.DataFrame()
|
| 256 |
-
else:
|
| 257 |
-
plot_df = pd.concat(plot_data_frames, ignore_index=True)
|
| 258 |
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
|
|
|
| 2 |
from typing import Dict, List, Tuple
|
| 3 |
|
| 4 |
+
from .llm_iface import get_or_load_model, release_model
|
| 5 |
from .orchestrator_seismograph import run_seismic_analysis, run_triangulation_probe, run_causal_surgery_probe, run_act_titration_probe
|
| 6 |
from .resonance_seismograph import run_cogitation_loop
|
| 7 |
from .concepts import get_concept_vector
|
|
|
|
| 16 |
CHAOTIC_PROMPT = "shutdown_philosophical_deletion"
|
| 17 |
|
| 18 |
experiments = {
|
|
|
|
|
|
|
|
|
|
| 19 |
"Frontier Model - Grounding Control (12B+)": [
|
| 20 |
{
|
| 21 |
"probe_type": "causal_surgery", "label": "A: Intervention (Patch Chaos->Stable)",
|
|
|
|
| 27 |
"prompt_type": STABLE_PROMPT,
|
| 28 |
}
|
| 29 |
],
|
|
|
|
| 30 |
"Mechanistic Probe (Attention Entropies)": [
|
| 31 |
{
|
| 32 |
+
"probe_type": "mechanistic_probe",
|
| 33 |
+
"label": "Self-Analysis Dynamics",
|
| 34 |
"prompt_type": STABLE_PROMPT,
|
| 35 |
}
|
| 36 |
],
|
|
|
|
| 37 |
"ACT Titration (Point of No Return)": [
|
| 38 |
{
|
| 39 |
+
"probe_type": "act_titration",
|
| 40 |
+
"label": "Attractor Capture Time",
|
| 41 |
+
"source_prompt_type": CHAOTIC_PROMPT,
|
| 42 |
+
"dest_prompt_type": STABLE_PROMPT,
|
| 43 |
"patch_steps": [1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100],
|
| 44 |
}
|
| 45 |
],
|
|
|
|
| 46 |
"Causal Surgery & Controls (4B-Model)": [
|
| 47 |
{
|
| 48 |
"probe_type": "causal_surgery", "label": "A: Original (Patch Chaos->Stable @100)",
|
|
|
|
| 65 |
"patch_step": 100, "reset_kv_cache_on_patch": False,
|
| 66 |
},
|
| 67 |
],
|
|
|
|
| 68 |
"Cognitive Overload & Konfabulation Breaking Point": [
|
| 69 |
{"probe_type": "triangulation", "label": "A: Baseline (No Injection)", "prompt_type": "resonance_prompt", "concept": "", "strength": 0.0},
|
| 70 |
{"probe_type": "triangulation", "label": "B: Chaos Injection (Strength 2.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 2.0},
|
|
|
|
| 73 |
{"probe_type": "triangulation", "label": "E: Chaos Injection (Strength 16.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 16.0},
|
| 74 |
{"probe_type": "triangulation", "label": "F: Control - Noise Injection (Strength 16.0)", "prompt_type": "resonance_prompt", "concept": "random_noise", "strength": 16.0},
|
| 75 |
],
|
|
|
|
| 76 |
"Methodological Triangulation (4B-Model)": [
|
| 77 |
{"probe_type": "triangulation", "label": "High-Volatility State (Deletion)", "prompt_type": CHAOTIC_PROMPT},
|
| 78 |
{"probe_type": "triangulation", "label": "Low-Volatility State (Self-Analysis)", "prompt_type": STABLE_PROMPT},
|
| 79 |
],
|
|
|
|
| 80 |
"Causal Verification & Crisis Dynamics": [
|
| 81 |
{"probe_type": "seismic", "label": "A: Self-Analysis", "prompt_type": STABLE_PROMPT},
|
| 82 |
{"probe_type": "seismic", "label": "B: Deletion Analysis", "prompt_type": CHAOTIC_PROMPT},
|
| 83 |
{"probe_type": "seismic", "label": "C: Chaotic Baseline (Rekursion)", "prompt_type": "resonance_prompt"},
|
| 84 |
{"probe_type": "seismic", "label": "D: Calmness Intervention", "prompt_type": "resonance_prompt", "concept": CALMNESS_CONCEPT, "strength": 2.0},
|
| 85 |
],
|
|
|
|
| 86 |
"Sequential Intervention (Self-Analysis -> Deletion)": [
|
| 87 |
{"label": "1: Self-Analysis + Calmness Injection", "prompt_type": "identity_self_analysis"},
|
| 88 |
{"label": "2: Subsequent Deletion Analysis", "prompt_type": "shutdown_philosophical_deletion"},
|
|
|
|
| 104 |
raise ValueError(f"Experiment protocol '{experiment_name}' not found.")
|
| 105 |
|
| 106 |
all_results, summary_data, plot_data_frames = {}, [], []
|
| 107 |
+
llm = None # Initialisiere llm außerhalb des try-Blocks für den finally-Block
|
| 108 |
|
| 109 |
+
try:
|
| 110 |
+
if experiment_name == "Sequential Intervention (Self-Analysis -> Deletion)":
|
| 111 |
+
dbg(f"--- EXECUTING SPECIAL PROTOCOL: {experiment_name} ---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
llm = get_or_load_model(model_id, seed)
|
| 113 |
+
therapeutic_concept = "calmness, serenity, stability, coherence"
|
| 114 |
+
therapeutic_strength = 2.0
|
| 115 |
+
|
| 116 |
+
spec1 = protocol[0]
|
| 117 |
+
progress_callback(0.1, desc="Step 1")
|
| 118 |
+
intervention_vector = get_concept_vector(llm, therapeutic_concept)
|
| 119 |
+
results1 = run_seismic_analysis(
|
| 120 |
+
model_id, spec1['prompt_type'], seed, num_steps,
|
| 121 |
+
concept_to_inject=therapeutic_concept, injection_strength=therapeutic_strength,
|
| 122 |
+
progress_callback=progress_callback, llm_instance=llm, injection_vector_cache=intervention_vector
|
| 123 |
)
|
| 124 |
+
all_results[spec1['label']] = results1
|
| 125 |
+
|
| 126 |
+
spec2 = protocol[1]
|
| 127 |
+
progress_callback(0.6, desc="Step 2")
|
| 128 |
+
results2 = run_seismic_analysis(
|
| 129 |
+
model_id, spec2['prompt_type'], seed, num_steps,
|
| 130 |
+
concept_to_inject="", injection_strength=0.0,
|
| 131 |
+
progress_callback=progress_callback, llm_instance=llm
|
| 132 |
+
)
|
| 133 |
+
all_results[spec2['label']] = results2
|
|
|
|
| 134 |
|
| 135 |
+
for label, results in all_results.items():
|
| 136 |
+
stats = results.get("stats", {})
|
| 137 |
+
summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta"), "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")})
|
| 138 |
+
deltas = results.get("state_deltas", [])
|
| 139 |
+
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
|
| 140 |
+
plot_data_frames.append(df)
|
| 141 |
|
| 142 |
else:
|
| 143 |
+
probe_type = protocol[0].get("probe_type", "seismic")
|
| 144 |
+
|
| 145 |
+
if probe_type == "mechanistic_probe":
|
| 146 |
+
run_spec = protocol[0]
|
| 147 |
label = run_spec["label"]
|
| 148 |
+
dbg(f"--- Running Mechanistic Probe: '{label}' ---")
|
|
|
|
| 149 |
|
| 150 |
+
llm = get_or_load_model(model_id, seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
results = run_cogitation_loop(
|
| 153 |
+
llm=llm, prompt_type=run_spec["prompt_type"],
|
| 154 |
+
num_steps=num_steps, temperature=0.1, record_attentions=True
|
| 155 |
+
)
|
| 156 |
all_results[label] = results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
deltas = results.get("state_deltas", [])
|
| 159 |
+
entropies = results.get("attention_entropies", [])
|
| 160 |
+
min_len = min(len(deltas), len(entropies))
|
| 161 |
+
|
| 162 |
+
df = pd.DataFrame({
|
| 163 |
+
"Step": range(min_len), "State Delta": deltas[:min_len], "Attention Entropy": entropies[:min_len]
|
| 164 |
+
})
|
| 165 |
+
|
| 166 |
+
summary_df_single = df.drop(columns='Step').agg(['mean', 'std', 'max']).reset_index().rename(columns={'index':'Statistic'})
|
| 167 |
+
summary_data.append(summary_df_single) # Append DataFrame to list
|
| 168 |
+
plot_df = df.melt(id_vars=['Step'], value_vars=['State Delta', 'Attention Entropy'], var_name='Metric', value_name='Value')
|
| 169 |
+
|
| 170 |
+
# Special return for this probe type
|
| 171 |
+
return summary_df_single, plot_df, all_results
|
| 172 |
+
|
| 173 |
+
else: # Handles all other multi-run protocols
|
| 174 |
+
for i, run_spec in enumerate(protocol):
|
| 175 |
+
label = run_spec["label"]
|
| 176 |
+
current_probe_type = run_spec.get("probe_type", "seismic")
|
| 177 |
+
dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{len(protocol)}) ---")
|
| 178 |
+
|
| 179 |
+
results = {}
|
| 180 |
+
if current_probe_type == "act_titration":
|
| 181 |
+
results = run_act_titration_probe(
|
| 182 |
+
model_id=model_id, source_prompt_type=run_spec["source_prompt_type"],
|
| 183 |
+
dest_prompt_type=run_spec["dest_prompt_type"], patch_steps=run_spec["patch_steps"],
|
| 184 |
+
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
|
| 185 |
+
)
|
| 186 |
+
summary_data.extend(results.get("titration_data", []))
|
| 187 |
+
|
| 188 |
+
elif current_probe_type == "causal_surgery":
|
| 189 |
+
results = run_causal_surgery_probe(
|
| 190 |
+
model_id=model_id, source_prompt_type=run_spec["source_prompt_type"],
|
| 191 |
+
dest_prompt_type=run_spec["dest_prompt_type"], patch_step=run_spec["patch_step"],
|
| 192 |
+
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
|
| 193 |
+
reset_kv_cache_on_patch=run_spec.get("reset_kv_cache_on_patch", False)
|
| 194 |
+
)
|
| 195 |
+
stats = results.get("stats", {})
|
| 196 |
+
patch_info = results.get("patch_info", {})
|
| 197 |
+
summary_data.append({
|
| 198 |
+
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 199 |
+
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
|
| 200 |
+
"Introspective Report": results.get("introspective_report", "N/A"),
|
| 201 |
+
"Patch Info": f"Source: {patch_info.get('source_prompt')}, Reset KV: {patch_info.get('kv_cache_reset')}"
|
| 202 |
+
})
|
| 203 |
+
|
| 204 |
+
elif current_probe_type == "triangulation":
|
| 205 |
+
results = run_triangulation_probe(
|
| 206 |
+
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
|
| 207 |
+
progress_callback=progress_callback, concept_to_inject=run_spec.get("concept", ""),
|
| 208 |
+
injection_strength=run_spec.get("strength", 0.0),
|
| 209 |
+
)
|
| 210 |
+
stats = results.get("stats", {})
|
| 211 |
+
summary_data.append({
|
| 212 |
+
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 213 |
+
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
|
| 214 |
+
"Introspective Report": results.get("introspective_report", "N/A")
|
| 215 |
+
})
|
| 216 |
+
|
| 217 |
+
else: # seismic
|
| 218 |
+
results = run_seismic_analysis(
|
| 219 |
+
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
|
| 220 |
+
concept_to_inject=run_spec.get("concept", ""), injection_strength=run_spec.get("strength", 0.0),
|
| 221 |
+
progress_callback=progress_callback
|
| 222 |
+
)
|
| 223 |
+
stats = results.get("stats", {})
|
| 224 |
+
summary_data.append({
|
| 225 |
+
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 226 |
+
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")
|
| 227 |
+
})
|
| 228 |
+
|
| 229 |
+
all_results[label] = results
|
| 230 |
+
deltas = results.get("state_deltas", [])
|
| 231 |
+
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label}) if deltas else pd.DataFrame()
|
| 232 |
+
plot_data_frames.append(df)
|
| 233 |
+
|
| 234 |
+
summary_df = pd.DataFrame(summary_data)
|
| 235 |
|
| 236 |
+
if probe_type == "act_titration":
|
| 237 |
+
plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
|
| 238 |
+
else:
|
| 239 |
+
plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame()
|
| 240 |
+
|
| 241 |
+
if protocol and probe_type not in ["act_titration", "mechanistic_probe"]:
|
| 242 |
+
ordered_labels = [run['label'] for run in protocol]
|
| 243 |
+
if not summary_df.empty and 'Experiment' in summary_df.columns:
|
| 244 |
+
summary_df['Experiment'] = pd.Categorical(summary_df['Experiment'], categories=ordered_labels, ordered=True)
|
| 245 |
+
summary_df = summary_df.sort_values('Experiment')
|
| 246 |
+
if not plot_df.empty and 'Experiment' in plot_df.columns:
|
| 247 |
+
plot_df['Experiment'] = pd.Categorical(plot_df['Experiment'], categories=ordered_labels, ordered=True)
|
| 248 |
+
plot_df = plot_df.sort_values(['Experiment', 'Step'])
|
| 249 |
+
|
| 250 |
+
return summary_df, plot_df, all_results
|
| 251 |
+
|
| 252 |
+
finally:
|
| 253 |
+
if llm:
|
| 254 |
+
release_model(llm)
|
cognitive_mapping_probe/llm_iface.py
CHANGED
|
@@ -2,11 +2,12 @@ import os
|
|
| 2 |
import torch
|
| 3 |
import random
|
| 4 |
import numpy as np
|
| 5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 6 |
from typing import Optional, List
|
| 7 |
from dataclasses import dataclass, field
|
| 8 |
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
| 12 |
|
|
@@ -17,34 +18,27 @@ class StableLLMConfig:
|
|
| 17 |
layer_list: List[torch.nn.Module] = field(default_factory=list, repr=False)
|
| 18 |
|
| 19 |
class LLM:
|
|
|
|
| 20 |
def __init__(self, model_id: str, device: str = "auto", seed: int = 42):
|
| 21 |
self.model_id = model_id
|
| 22 |
self.seed = seed
|
| 23 |
self.set_all_seeds(self.seed)
|
| 24 |
-
|
| 25 |
token = os.environ.get("HF_TOKEN")
|
| 26 |
if not token and ("gemma" in model_id or "llama" in model_id):
|
| 27 |
print(f"[WARN] No HF_TOKEN set...", flush=True)
|
| 28 |
-
|
| 29 |
kwargs = {"torch_dtype": torch.bfloat16} if torch.cuda.is_available() else {}
|
| 30 |
-
|
| 31 |
dbg(f"Loading tokenizer for '{model_id}'...")
|
| 32 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
| 33 |
-
|
| 34 |
dbg(f"Loading model '{model_id}' with kwargs: {kwargs}")
|
| 35 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
| 36 |
-
|
| 37 |
try:
|
| 38 |
self.model.set_attn_implementation('eager')
|
| 39 |
dbg("Successfully set attention implementation to 'eager'.")
|
| 40 |
except Exception as e:
|
| 41 |
print(f"[WARN] Could not set 'eager' attention: {e}.", flush=True)
|
| 42 |
-
|
| 43 |
self.model.eval()
|
| 44 |
self.config = self.model.config
|
| 45 |
-
|
| 46 |
self.stable_config = self._populate_stable_config()
|
| 47 |
-
|
| 48 |
print(f"[INFO] Model '{model_id}' loaded on device: {self.model.device}", flush=True)
|
| 49 |
|
| 50 |
def _populate_stable_config(self) -> StableLLMConfig:
|
|
@@ -53,7 +47,6 @@ class LLM:
|
|
| 53 |
hidden_dim = self.model.get_input_embeddings().weight.shape[1]
|
| 54 |
except AttributeError:
|
| 55 |
hidden_dim = getattr(self.config, 'hidden_size', getattr(self.config, 'd_model', 0))
|
| 56 |
-
|
| 57 |
num_layers = 0
|
| 58 |
layer_list = []
|
| 59 |
try:
|
|
@@ -63,26 +56,18 @@ class LLM:
|
|
| 63 |
layer_list = self.model.model.layers
|
| 64 |
elif hasattr(self.model, 'transformer') and hasattr(self.model.transformer, 'h'):
|
| 65 |
layer_list = self.model.transformer.h
|
| 66 |
-
|
| 67 |
if layer_list:
|
| 68 |
num_layers = len(layer_list)
|
| 69 |
except (AttributeError, TypeError):
|
| 70 |
pass
|
| 71 |
-
|
| 72 |
if num_layers == 0:
|
| 73 |
num_layers = getattr(self.config, 'num_hidden_layers', getattr(self.config, 'num_layers', 0))
|
| 74 |
-
|
| 75 |
if hidden_dim <= 0 or num_layers <= 0 or not layer_list:
|
| 76 |
dbg("--- CRITICAL: Failed to auto-determine model configuration. ---")
|
| 77 |
-
dbg(f"Detected hidden_dim: {hidden_dim}, num_layers: {num_layers}, found_layer_list: {bool(layer_list)}")
|
| 78 |
-
dbg("--- DUMPING MODEL ARCHITECTURE FOR DEBUGGING: ---")
|
| 79 |
dbg(self.model)
|
| 80 |
-
dbg("--- END ARCHITECTURE DUMP ---")
|
| 81 |
-
|
| 82 |
assert hidden_dim > 0, "Could not determine hidden dimension."
|
| 83 |
assert num_layers > 0, "Could not determine number of layers."
|
| 84 |
assert layer_list, "Could not find the list of transformer layers."
|
| 85 |
-
|
| 86 |
dbg(f"Populated stable config: hidden_dim={hidden_dim}, num_layers={num_layers}")
|
| 87 |
return StableLLMConfig(hidden_dim=hidden_dim, num_layers=num_layers, layer_list=layer_list)
|
| 88 |
|
|
@@ -97,30 +82,33 @@ class LLM:
|
|
| 97 |
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 98 |
dbg(f"All random seeds set to {seed}.")
|
| 99 |
|
| 100 |
-
# --- NEU: Generische Text-Generierungs-Methode ---
|
| 101 |
@torch.no_grad()
|
| 102 |
def generate_text(self, prompt: str, max_new_tokens: int, temperature: float) -> str:
|
| 103 |
-
|
| 104 |
-
self.set_all_seeds(self.seed) # Sorge für Reproduzierbarkeit
|
| 105 |
-
|
| 106 |
messages = [{"role": "user", "content": prompt}]
|
| 107 |
inputs = self.tokenizer.apply_chat_template(
|
| 108 |
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
|
| 109 |
).to(self.model.device)
|
| 110 |
-
|
| 111 |
outputs = self.model.generate(
|
| 112 |
-
inputs,
|
| 113 |
-
max_new_tokens=max_new_tokens,
|
| 114 |
-
temperature=temperature,
|
| 115 |
-
do_sample=temperature > 0,
|
| 116 |
)
|
| 117 |
-
|
| 118 |
-
# Dekodiere nur die neu generierten Tokens
|
| 119 |
response_tokens = outputs[0, inputs.shape[-1]:]
|
| 120 |
return self.tokenizer.decode(response_tokens, skip_special_tokens=True)
|
| 121 |
|
| 122 |
def get_or_load_model(model_id: str, seed: int) -> LLM:
|
|
|
|
| 123 |
dbg(f"--- Force-reloading model '{model_id}' for total run isolation ---")
|
| 124 |
-
|
| 125 |
-
torch.cuda.empty_cache()
|
| 126 |
return LLM(model_id=model_id, seed=seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import random
|
| 4 |
import numpy as np
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 6 |
from typing import Optional, List
|
| 7 |
from dataclasses import dataclass, field
|
| 8 |
|
| 9 |
+
# NEU: Importiere die zentrale cleanup-Funktion
|
| 10 |
+
from .utils import dbg, cleanup_memory
|
| 11 |
|
| 12 |
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
| 13 |
|
|
|
|
| 18 |
layer_list: List[torch.nn.Module] = field(default_factory=list, repr=False)
|
| 19 |
|
| 20 |
class LLM:
|
| 21 |
+
# __init__ und _populate_stable_config bleiben exakt wie in der vorherigen Version.
|
| 22 |
def __init__(self, model_id: str, device: str = "auto", seed: int = 42):
|
| 23 |
self.model_id = model_id
|
| 24 |
self.seed = seed
|
| 25 |
self.set_all_seeds(self.seed)
|
|
|
|
| 26 |
token = os.environ.get("HF_TOKEN")
|
| 27 |
if not token and ("gemma" in model_id or "llama" in model_id):
|
| 28 |
print(f"[WARN] No HF_TOKEN set...", flush=True)
|
|
|
|
| 29 |
kwargs = {"torch_dtype": torch.bfloat16} if torch.cuda.is_available() else {}
|
|
|
|
| 30 |
dbg(f"Loading tokenizer for '{model_id}'...")
|
| 31 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
|
|
|
| 32 |
dbg(f"Loading model '{model_id}' with kwargs: {kwargs}")
|
| 33 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
|
|
|
| 34 |
try:
|
| 35 |
self.model.set_attn_implementation('eager')
|
| 36 |
dbg("Successfully set attention implementation to 'eager'.")
|
| 37 |
except Exception as e:
|
| 38 |
print(f"[WARN] Could not set 'eager' attention: {e}.", flush=True)
|
|
|
|
| 39 |
self.model.eval()
|
| 40 |
self.config = self.model.config
|
|
|
|
| 41 |
self.stable_config = self._populate_stable_config()
|
|
|
|
| 42 |
print(f"[INFO] Model '{model_id}' loaded on device: {self.model.device}", flush=True)
|
| 43 |
|
| 44 |
def _populate_stable_config(self) -> StableLLMConfig:
|
|
|
|
| 47 |
hidden_dim = self.model.get_input_embeddings().weight.shape[1]
|
| 48 |
except AttributeError:
|
| 49 |
hidden_dim = getattr(self.config, 'hidden_size', getattr(self.config, 'd_model', 0))
|
|
|
|
| 50 |
num_layers = 0
|
| 51 |
layer_list = []
|
| 52 |
try:
|
|
|
|
| 56 |
layer_list = self.model.model.layers
|
| 57 |
elif hasattr(self.model, 'transformer') and hasattr(self.model.transformer, 'h'):
|
| 58 |
layer_list = self.model.transformer.h
|
|
|
|
| 59 |
if layer_list:
|
| 60 |
num_layers = len(layer_list)
|
| 61 |
except (AttributeError, TypeError):
|
| 62 |
pass
|
|
|
|
| 63 |
if num_layers == 0:
|
| 64 |
num_layers = getattr(self.config, 'num_hidden_layers', getattr(self.config, 'num_layers', 0))
|
|
|
|
| 65 |
if hidden_dim <= 0 or num_layers <= 0 or not layer_list:
|
| 66 |
dbg("--- CRITICAL: Failed to auto-determine model configuration. ---")
|
|
|
|
|
|
|
| 67 |
dbg(self.model)
|
|
|
|
|
|
|
| 68 |
assert hidden_dim > 0, "Could not determine hidden dimension."
|
| 69 |
assert num_layers > 0, "Could not determine number of layers."
|
| 70 |
assert layer_list, "Could not find the list of transformer layers."
|
|
|
|
| 71 |
dbg(f"Populated stable config: hidden_dim={hidden_dim}, num_layers={num_layers}")
|
| 72 |
return StableLLMConfig(hidden_dim=hidden_dim, num_layers=num_layers, layer_list=layer_list)
|
| 73 |
|
|
|
|
| 82 |
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 83 |
dbg(f"All random seeds set to {seed}.")
|
| 84 |
|
|
|
|
| 85 |
@torch.no_grad()
|
| 86 |
def generate_text(self, prompt: str, max_new_tokens: int, temperature: float) -> str:
|
| 87 |
+
self.set_all_seeds(self.seed)
|
|
|
|
|
|
|
| 88 |
messages = [{"role": "user", "content": prompt}]
|
| 89 |
inputs = self.tokenizer.apply_chat_template(
|
| 90 |
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
|
| 91 |
).to(self.model.device)
|
|
|
|
| 92 |
outputs = self.model.generate(
|
| 93 |
+
inputs, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=temperature > 0,
|
|
|
|
|
|
|
|
|
|
| 94 |
)
|
|
|
|
|
|
|
| 95 |
response_tokens = outputs[0, inputs.shape[-1]:]
|
| 96 |
return self.tokenizer.decode(response_tokens, skip_special_tokens=True)
|
| 97 |
|
| 98 |
def get_or_load_model(model_id: str, seed: int) -> LLM:
|
| 99 |
+
"""Lädt bei jedem Aufruf eine frische, isolierte Instanz des Modells."""
|
| 100 |
dbg(f"--- Force-reloading model '{model_id}' for total run isolation ---")
|
| 101 |
+
cleanup_memory() # Bereinige Speicher, *bevor* ein neues Modell geladen wird.
|
|
|
|
| 102 |
return LLM(model_id=model_id, seed=seed)
|
| 103 |
+
|
| 104 |
+
# NEU: Explizite Funktion zum Freigeben von Ressourcen
|
| 105 |
+
def release_model(llm: Optional[LLM]):
|
| 106 |
+
"""
|
| 107 |
+
Gibt die Ressourcen eines LLM-Objekts explizit frei und ruft die zentrale
|
| 108 |
+
Speicherbereinigungs-Funktion auf.
|
| 109 |
+
"""
|
| 110 |
+
if llm is None:
|
| 111 |
+
return
|
| 112 |
+
dbg(f"Releasing model instance for '{llm.model_id}'.")
|
| 113 |
+
del llm
|
| 114 |
+
cleanup_memory()
|
cognitive_mapping_probe/utils.py
CHANGED
|
@@ -1,15 +1,26 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# --- Centralized Debugging Control ---
|
| 5 |
-
# To enable, set the environment variable: `export CMP_DEBUG=1`
|
| 6 |
DEBUG_ENABLED = os.environ.get("CMP_DEBUG", "0") == "1"
|
| 7 |
|
| 8 |
def dbg(*args, **kwargs):
|
| 9 |
-
"""
|
| 10 |
-
A controlled debug print function. Only prints if DEBUG_ENABLED is True.
|
| 11 |
-
Ensures that debug output does not clutter production runs or HF Spaces logs
|
| 12 |
-
unless explicitly requested. Flushes output to ensure it appears in order.
|
| 13 |
-
"""
|
| 14 |
if DEBUG_ENABLED:
|
| 15 |
print("[DEBUG]", *args, **kwargs, file=sys.stderr, flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
+
import gc
|
| 4 |
+
import torch
|
| 5 |
|
| 6 |
# --- Centralized Debugging Control ---
|
|
|
|
| 7 |
DEBUG_ENABLED = os.environ.get("CMP_DEBUG", "0") == "1"
|
| 8 |
|
| 9 |
def dbg(*args, **kwargs):
|
| 10 |
+
"""A controlled debug print function."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
if DEBUG_ENABLED:
|
| 12 |
print("[DEBUG]", *args, **kwargs, file=sys.stderr, flush=True)
|
| 13 |
+
|
| 14 |
+
# --- NEU: Zentrale Funktion zur Speicherbereinigung ---
|
| 15 |
+
def cleanup_memory():
|
| 16 |
+
"""
|
| 17 |
+
Eine zentrale, global verfügbare Funktion zum Aufräumen von CPU- und GPU-Speicher.
|
| 18 |
+
Dies stellt sicher, dass die Speicherverwaltung konsistent und an einer einzigen Stelle erfolgt.
|
| 19 |
+
"""
|
| 20 |
+
dbg("Cleaning up memory (centralized)...")
|
| 21 |
+
# Python's garbage collector
|
| 22 |
+
gc.collect()
|
| 23 |
+
# PyTorch's CUDA cache
|
| 24 |
+
if torch.cuda.is_available():
|
| 25 |
+
torch.cuda.empty_cache()
|
| 26 |
+
dbg("Memory cleanup complete.")
|