Update tests/test_components.py
Browse files- tests/test_components.py +48 -2
tests/test_components.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from cognitive_mapping_probe.llm_iface import get_or_load_model
|
| 3 |
from cognitive_mapping_probe.resonance_seismograph import run_silent_cogitation_seismic
|
| 4 |
from cognitive_mapping_probe.concepts import get_concept_vector, _get_last_token_hidden_state
|
|
|
|
| 5 |
|
| 6 |
def test_get_or_load_model_loads_correctly(model_id):
|
| 7 |
"""Testet, ob das Laden eines echten Modells funktioniert."""
|
|
@@ -13,7 +15,7 @@ def test_get_or_load_model_loads_correctly(model_id):
|
|
| 13 |
|
| 14 |
def test_run_silent_cogitation_seismic_output_shape_and_type(model_id):
|
| 15 |
"""Führt einen kurzen Lauf mit einem echten Modell durch und prüft die Datentypen."""
|
| 16 |
-
num_steps =
|
| 17 |
llm = get_or_load_model(model_id, seed=42)
|
| 18 |
state_deltas = run_silent_cogitation_seismic(
|
| 19 |
llm=llm, prompt_type="control_long_prose",
|
|
@@ -33,7 +35,51 @@ def test_get_last_token_hidden_state_robustness(model_id):
|
|
| 33 |
def test_get_concept_vector_logic(model_id):
|
| 34 |
"""Testet die Vektor-Extraktion mit einem echten Modell."""
|
| 35 |
llm = get_or_load_model(model_id, seed=42)
|
| 36 |
-
# Verwende eine sehr kurze Baseline für einen schnellen Test
|
| 37 |
vector = get_concept_vector(llm, "love", baseline_words=["thing", "place"])
|
| 38 |
assert isinstance(vector, torch.Tensor)
|
| 39 |
assert vector.shape == (llm.stable_config.hidden_dim,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
from cognitive_mapping_probe.llm_iface import get_or_load_model
|
| 4 |
from cognitive_mapping_probe.resonance_seismograph import run_silent_cogitation_seismic
|
| 5 |
from cognitive_mapping_probe.concepts import get_concept_vector, _get_last_token_hidden_state
|
| 6 |
+
from cognitive_mapping_probe.signal_analysis import analyze_cognitive_signal
|
| 7 |
|
| 8 |
def test_get_or_load_model_loads_correctly(model_id):
|
| 9 |
"""Testet, ob das Laden eines echten Modells funktioniert."""
|
|
|
|
| 15 |
|
| 16 |
def test_run_silent_cogitation_seismic_output_shape_and_type(model_id):
|
| 17 |
"""Führt einen kurzen Lauf mit einem echten Modell durch und prüft die Datentypen."""
|
| 18 |
+
num_steps = 10
|
| 19 |
llm = get_or_load_model(model_id, seed=42)
|
| 20 |
state_deltas = run_silent_cogitation_seismic(
|
| 21 |
llm=llm, prompt_type="control_long_prose",
|
|
|
|
| 35 |
def test_get_concept_vector_logic(model_id):
|
| 36 |
"""Testet die Vektor-Extraktion mit einem echten Modell."""
|
| 37 |
llm = get_or_load_model(model_id, seed=42)
|
|
|
|
| 38 |
vector = get_concept_vector(llm, "love", baseline_words=["thing", "place"])
|
| 39 |
assert isinstance(vector, torch.Tensor)
|
| 40 |
assert vector.shape == (llm.stable_config.hidden_dim,)
|
| 41 |
+
|
| 42 |
+
def test_analyze_cognitive_signal_no_peaks():
|
| 43 |
+
"""
|
| 44 |
+
Testet den Edge Case, dass ein Signal keine signifikanten Frequenz-Peaks hat.
|
| 45 |
+
"""
|
| 46 |
+
flat_signal = np.linspace(0, 1, 100)
|
| 47 |
+
results = analyze_cognitive_signal(flat_signal)
|
| 48 |
+
assert results is not None
|
| 49 |
+
assert results["dominant_periods_steps"] is None
|
| 50 |
+
assert "spectral_entropy" in results
|
| 51 |
+
|
| 52 |
+
def test_analyze_cognitive_signal_with_peaks():
|
| 53 |
+
"""
|
| 54 |
+
Testet den Normalfall, dass ein Signal Peaks hat, mit realistischerem Rauschen.
|
| 55 |
+
"""
|
| 56 |
+
np.random.seed(42)
|
| 57 |
+
steps = np.arange(200)
|
| 58 |
+
# Signal mit einer starken Periode von 10 und einer schwächeren von 25
|
| 59 |
+
signal_with_peak = (1.0 * np.sin(2 * np.pi * (1/10.0) * steps) +
|
| 60 |
+
0.5 * np.sin(2 * np.pi * (1/25.0) * steps) +
|
| 61 |
+
np.random.randn(200) * 0.5) # Realistischeres Rauschen
|
| 62 |
+
results = analyze_cognitive_signal(signal_with_peak)
|
| 63 |
+
|
| 64 |
+
assert results["dominant_periods_steps"] is not None
|
| 65 |
+
assert 10.0 in results["dominant_periods_steps"]
|
| 66 |
+
assert 25.0 in results["dominant_periods_steps"]
|
| 67 |
+
|
| 68 |
+
def test_analyze_cognitive_signal_with_multiple_peaks():
|
| 69 |
+
"""
|
| 70 |
+
Erweiterter Test, der die korrekte Identifizierung und Sortierung
|
| 71 |
+
von drei Peaks verifiziert, mit realistischerem Rauschen.
|
| 72 |
+
"""
|
| 73 |
+
np.random.seed(42)
|
| 74 |
+
steps = np.arange(300)
|
| 75 |
+
# Definiere drei Peaks mit unterschiedlicher Stärke (Amplitude)
|
| 76 |
+
signal = (2.0 * np.sin(2 * np.pi * (1/10.0) * steps) +
|
| 77 |
+
1.5 * np.sin(2 * np.pi * (1/4.0) * steps) +
|
| 78 |
+
1.0 * np.sin(2 * np.pi * (1/30.0) * steps) +
|
| 79 |
+
np.random.randn(300) * 0.5) # Realistischeres Rauschen
|
| 80 |
+
|
| 81 |
+
results = analyze_cognitive_signal(signal, num_peaks=3)
|
| 82 |
+
|
| 83 |
+
assert results["dominant_periods_steps"] is not None
|
| 84 |
+
expected_periods = [10.0, 4.0, 30.0]
|
| 85 |
+
assert results["dominant_periods_steps"] == expected_periods
|