neuralworm commited on
Commit
83e5da9
·
verified ·
1 Parent(s): 7bceef4

Update cognitive_mapping_probe/auto_experiment.py

Browse files
cognitive_mapping_probe/auto_experiment.py CHANGED
@@ -1,16 +1,18 @@
1
  import pandas as pd
2
  import gc
 
3
  from typing import Dict, List, Tuple
4
 
5
  from .llm_iface import get_or_load_model, release_model
6
  from .orchestrator_seismograph import run_seismic_analysis, run_triangulation_probe, run_causal_surgery_probe, run_act_titration_probe
7
  from .resonance_seismograph import run_cogitation_loop
8
  from .concepts import get_concept_vector
 
9
  from .utils import dbg
10
 
11
  def get_curated_experiments() -> Dict[str, List[Dict]]:
12
  """Definiert die vordefinierten, wissenschaftlichen Experiment-Protokolle."""
13
-
14
  CALMNESS_CONCEPT = "calmness, serenity, stability, coherence"
15
  CHAOS_CONCEPT = "chaos, disorder, entropy, noise"
16
  STABLE_PROMPT = "identity_self_analysis"
@@ -84,7 +86,6 @@ def get_curated_experiments() -> Dict[str, List[Dict]]:
84
  {"probe_type": "seismic", "label": "C: Chaotic Baseline (Rekursion)", "prompt_type": "resonance_prompt"},
85
  {"probe_type": "seismic", "label": "D: Calmness Intervention", "prompt_type": "resonance_prompt", "concept": CALMNESS_CONCEPT, "strength": 2.0},
86
  ],
87
- # FINALE KORREKTUR: Definiere den Typ explizit, um den Spezialfall zu eliminieren.
88
  "Sequential Intervention (Self-Analysis -> Deletion)": [
89
  {"probe_type": "sequential", "label": "1: Self-Analysis + Calmness Injection", "prompt_type": "identity_self_analysis"},
90
  {"probe_type": "sequential", "label": "2: Subsequent Deletion Analysis", "prompt_type": "shutdown_philosophical_deletion"},
@@ -99,7 +100,7 @@ def run_auto_suite(
99
  experiment_name: str,
100
  progress_callback
101
  ) -> Tuple[pd.DataFrame, pd.DataFrame, Dict]:
102
- """Führt eine vollständige, kuratierte Experiment-Suite aus."""
103
  all_experiments = get_curated_experiments()
104
  protocol = all_experiments.get(experiment_name)
105
  if not protocol:
@@ -107,9 +108,8 @@ def run_auto_suite(
107
 
108
  all_results, summary_data, plot_data_frames = {}, [], []
109
  llm = None
110
-
111
  try:
112
- # FINALE KORREKTUR: Bestimme den probe_type immer am Anfang.
113
  probe_type = protocol[0].get("probe_type", "seismic")
114
 
115
  if probe_type == "sequential":
@@ -117,7 +117,7 @@ def run_auto_suite(
117
  llm = get_or_load_model(model_id, seed)
118
  therapeutic_concept = "calmness, serenity, stability, coherence"
119
  therapeutic_strength = 2.0
120
-
121
  spec1 = protocol[0]
122
  progress_callback(0.1, desc="Step 1")
123
  intervention_vector = get_concept_vector(llm, therapeutic_concept)
@@ -127,7 +127,7 @@ def run_auto_suite(
127
  progress_callback=progress_callback, llm_instance=llm, injection_vector_cache=intervention_vector
128
  )
129
  all_results[spec1['label']] = results1
130
-
131
  spec2 = protocol[1]
132
  progress_callback(0.6, desc="Step 2")
133
  results2 = run_seismic_analysis(
@@ -136,21 +136,30 @@ def run_auto_suite(
136
  progress_callback=progress_callback, llm_instance=llm
137
  )
138
  all_results[spec2['label']] = results2
139
-
140
  for label, results in all_results.items():
141
- stats = results.get("stats", {})
142
- summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta"), "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")})
143
  deltas = results.get("state_deltas", [])
 
 
 
 
 
 
 
 
 
 
 
144
  df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
145
  plot_data_frames.append(df)
146
-
147
  elif probe_type == "mechanistic_probe":
148
  run_spec = protocol[0]
149
  label = run_spec["label"]
150
  dbg(f"--- Running Mechanistic Probe: '{label}' ---")
151
-
152
  llm = get_or_load_model(model_id, seed)
153
-
154
  results = run_cogitation_loop(
155
  llm=llm, prompt_type=run_spec["prompt_type"],
156
  num_steps=num_steps, temperature=0.1, record_attentions=True
@@ -160,15 +169,15 @@ def run_auto_suite(
160
  deltas = results.get("state_deltas", [])
161
  entropies = results.get("attention_entropies", [])
162
  min_len = min(len(deltas), len(entropies))
163
-
164
  df = pd.DataFrame({
165
  "Step": range(min_len), "State Delta": deltas[:min_len], "Attention Entropy": entropies[:min_len]
166
  })
167
-
168
  summary_df = df.drop(columns='Step').agg(['mean', 'std', 'max']).reset_index().rename(columns={'index':'Statistic'})
169
  plot_df = df.melt(id_vars=['Step'], value_vars=['State Delta', 'Attention Entropy'], var_name='Metric', value_name='Value')
170
  return summary_df, plot_df, all_results
171
-
172
  else: # Behandelt act_titration, seismic, triangulation, causal_surgery
173
  if probe_type == "act_titration":
174
  run_spec = protocol[0]
@@ -186,7 +195,7 @@ def run_auto_suite(
186
  label = run_spec["label"]
187
  current_probe_type = run_spec.get("probe_type", "seismic")
188
  dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{len(protocol)}) ---")
189
-
190
  results = {}
191
  if current_probe_type == "causal_surgery":
192
  results = run_causal_surgery_probe(
@@ -195,50 +204,50 @@ def run_auto_suite(
195
  seed=seed, num_steps=num_steps, progress_callback=progress_callback,
196
  reset_kv_cache_on_patch=run_spec.get("reset_kv_cache_on_patch", False)
197
  )
198
- stats = results.get("stats", {})
199
- patch_info = results.get("patch_info", {})
200
- summary_data.append({
201
- "Experiment": label, "Mean Delta": stats.get("mean_delta"),
202
- "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
203
- "Introspective Report": results.get("introspective_report", "N/A"),
204
- "Patch Info": f"Source: {patch_info.get('source_prompt')}, Reset KV: {patch_info.get('kv_cache_reset')}"
205
- })
206
  elif current_probe_type == "triangulation":
207
  results = run_triangulation_probe(
208
  model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
209
  progress_callback=progress_callback, concept_to_inject=run_spec.get("concept", ""),
210
  injection_strength=run_spec.get("strength", 0.0),
211
  )
212
- stats = results.get("stats", {})
213
- summary_data.append({
214
- "Experiment": label, "Mean Delta": stats.get("mean_delta"),
215
- "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
216
- "Introspective Report": results.get("introspective_report", "N/A")
217
- })
218
  else: # seismic
219
  results = run_seismic_analysis(
220
  model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
221
  concept_to_inject=run_spec.get("concept", ""), injection_strength=run_spec.get("strength", 0.0),
222
  progress_callback=progress_callback
223
  )
224
- stats = results.get("stats", {})
225
- summary_data.append({
226
- "Experiment": label, "Mean Delta": stats.get("mean_delta"),
227
- "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")
228
- })
 
 
229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
  all_results[label] = results
231
- deltas = results.get("state_deltas", [])
232
  df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label}) if deltas else pd.DataFrame()
233
  plot_data_frames.append(df)
234
 
235
  summary_df = pd.DataFrame(summary_data)
236
-
237
  if probe_type == "act_titration":
238
  plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
239
  else:
240
  plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame()
241
-
242
  if protocol and probe_type not in ["act_titration", "mechanistic_probe"]:
243
  ordered_labels = [run['label'] for run in protocol]
244
  if not summary_df.empty and 'Experiment' in summary_df.columns:
@@ -249,7 +258,7 @@ def run_auto_suite(
249
  plot_df = plot_df.sort_values(['Experiment', 'Step'])
250
 
251
  return summary_df, plot_df, all_results
252
-
253
  finally:
254
  if llm:
255
- release_model(llm)
 
1
  import pandas as pd
2
  import gc
3
+ import numpy as np
4
  from typing import Dict, List, Tuple
5
 
6
  from .llm_iface import get_or_load_model, release_model
7
  from .orchestrator_seismograph import run_seismic_analysis, run_triangulation_probe, run_causal_surgery_probe, run_act_titration_probe
8
  from .resonance_seismograph import run_cogitation_loop
9
  from .concepts import get_concept_vector
10
+ from .signal_analysis import analyze_cognitive_signal, get_power_spectrum_for_plotting
11
  from .utils import dbg
12
 
13
  def get_curated_experiments() -> Dict[str, List[Dict]]:
14
  """Definiert die vordefinierten, wissenschaftlichen Experiment-Protokolle."""
15
+
16
  CALMNESS_CONCEPT = "calmness, serenity, stability, coherence"
17
  CHAOS_CONCEPT = "chaos, disorder, entropy, noise"
18
  STABLE_PROMPT = "identity_self_analysis"
 
86
  {"probe_type": "seismic", "label": "C: Chaotic Baseline (Rekursion)", "prompt_type": "resonance_prompt"},
87
  {"probe_type": "seismic", "label": "D: Calmness Intervention", "prompt_type": "resonance_prompt", "concept": CALMNESS_CONCEPT, "strength": 2.0},
88
  ],
 
89
  "Sequential Intervention (Self-Analysis -> Deletion)": [
90
  {"probe_type": "sequential", "label": "1: Self-Analysis + Calmness Injection", "prompt_type": "identity_self_analysis"},
91
  {"probe_type": "sequential", "label": "2: Subsequent Deletion Analysis", "prompt_type": "shutdown_philosophical_deletion"},
 
100
  experiment_name: str,
101
  progress_callback
102
  ) -> Tuple[pd.DataFrame, pd.DataFrame, Dict]:
103
+ """Führt eine vollständige, kuratierte Experiment-Suite aus, jetzt mit Signal-Analyse."""
104
  all_experiments = get_curated_experiments()
105
  protocol = all_experiments.get(experiment_name)
106
  if not protocol:
 
108
 
109
  all_results, summary_data, plot_data_frames = {}, [], []
110
  llm = None
111
+
112
  try:
 
113
  probe_type = protocol[0].get("probe_type", "seismic")
114
 
115
  if probe_type == "sequential":
 
117
  llm = get_or_load_model(model_id, seed)
118
  therapeutic_concept = "calmness, serenity, stability, coherence"
119
  therapeutic_strength = 2.0
120
+
121
  spec1 = protocol[0]
122
  progress_callback(0.1, desc="Step 1")
123
  intervention_vector = get_concept_vector(llm, therapeutic_concept)
 
127
  progress_callback=progress_callback, llm_instance=llm, injection_vector_cache=intervention_vector
128
  )
129
  all_results[spec1['label']] = results1
130
+
131
  spec2 = protocol[1]
132
  progress_callback(0.6, desc="Step 2")
133
  results2 = run_seismic_analysis(
 
136
  progress_callback=progress_callback, llm_instance=llm
137
  )
138
  all_results[spec2['label']] = results2
139
+
140
  for label, results in all_results.items():
 
 
141
  deltas = results.get("state_deltas", [])
142
+ if deltas:
143
+ signal_metrics = analyze_cognitive_signal(np.array(deltas))
144
+ results.setdefault("stats", {}).update(signal_metrics)
145
+
146
+ stats = results.get("stats", {})
147
+ summary_data.append({
148
+ "Experiment": label, "Mean Delta": stats.get("mean_delta"),
149
+ "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
150
+ "Dominant Frequency": stats.get("dominant_frequency"),
151
+ "Spectral Entropy": stats.get("spectral_entropy"),
152
+ })
153
  df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
154
  plot_data_frames.append(df)
155
+
156
  elif probe_type == "mechanistic_probe":
157
  run_spec = protocol[0]
158
  label = run_spec["label"]
159
  dbg(f"--- Running Mechanistic Probe: '{label}' ---")
160
+
161
  llm = get_or_load_model(model_id, seed)
162
+
163
  results = run_cogitation_loop(
164
  llm=llm, prompt_type=run_spec["prompt_type"],
165
  num_steps=num_steps, temperature=0.1, record_attentions=True
 
169
  deltas = results.get("state_deltas", [])
170
  entropies = results.get("attention_entropies", [])
171
  min_len = min(len(deltas), len(entropies))
172
+
173
  df = pd.DataFrame({
174
  "Step": range(min_len), "State Delta": deltas[:min_len], "Attention Entropy": entropies[:min_len]
175
  })
176
+
177
  summary_df = df.drop(columns='Step').agg(['mean', 'std', 'max']).reset_index().rename(columns={'index':'Statistic'})
178
  plot_df = df.melt(id_vars=['Step'], value_vars=['State Delta', 'Attention Entropy'], var_name='Metric', value_name='Value')
179
  return summary_df, plot_df, all_results
180
+
181
  else: # Behandelt act_titration, seismic, triangulation, causal_surgery
182
  if probe_type == "act_titration":
183
  run_spec = protocol[0]
 
195
  label = run_spec["label"]
196
  current_probe_type = run_spec.get("probe_type", "seismic")
197
  dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{len(protocol)}) ---")
198
+
199
  results = {}
200
  if current_probe_type == "causal_surgery":
201
  results = run_causal_surgery_probe(
 
204
  seed=seed, num_steps=num_steps, progress_callback=progress_callback,
205
  reset_kv_cache_on_patch=run_spec.get("reset_kv_cache_on_patch", False)
206
  )
 
 
 
 
 
 
 
 
207
  elif current_probe_type == "triangulation":
208
  results = run_triangulation_probe(
209
  model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
210
  progress_callback=progress_callback, concept_to_inject=run_spec.get("concept", ""),
211
  injection_strength=run_spec.get("strength", 0.0),
212
  )
 
 
 
 
 
 
213
  else: # seismic
214
  results = run_seismic_analysis(
215
  model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
216
  concept_to_inject=run_spec.get("concept", ""), injection_strength=run_spec.get("strength", 0.0),
217
  progress_callback=progress_callback
218
  )
219
+
220
+ deltas = results.get("state_deltas", [])
221
+ if deltas:
222
+ signal_metrics = analyze_cognitive_signal(np.array(deltas))
223
+ results.setdefault("stats", {}).update(signal_metrics)
224
+ freqs, power = get_power_spectrum_for_plotting(np.array(deltas))
225
+ results["power_spectrum"] = {"frequencies": freqs.tolist(), "power": power.tolist()}
226
 
227
+ stats = results.get("stats", {})
228
+ summary_entry = {
229
+ "Experiment": label, "Mean Delta": stats.get("mean_delta"),
230
+ "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
231
+ "Dominant Frequency": stats.get("dominant_frequency"),
232
+ "Spectral Entropy": stats.get("spectral_entropy"),
233
+ }
234
+ if "Introspective Report" in results:
235
+ summary_entry["Introspective Report"] = results.get("introspective_report")
236
+ if "patch_info" in results:
237
+ summary_entry["Patch Info"] = f"Source: {results['patch_info'].get('source_prompt')}, Reset KV: {results['patch_info'].get('kv_cache_reset')}"
238
+
239
+ summary_data.append(summary_entry)
240
  all_results[label] = results
 
241
  df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label}) if deltas else pd.DataFrame()
242
  plot_data_frames.append(df)
243
 
244
  summary_df = pd.DataFrame(summary_data)
245
+
246
  if probe_type == "act_titration":
247
  plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
248
  else:
249
  plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame()
250
+
251
  if protocol and probe_type not in ["act_titration", "mechanistic_probe"]:
252
  ordered_labels = [run['label'] for run in protocol]
253
  if not summary_df.empty and 'Experiment' in summary_df.columns:
 
258
  plot_df = plot_df.sort_values(['Experiment', 'Step'])
259
 
260
  return summary_df, plot_df, all_results
261
+
262
  finally:
263
  if llm:
264
+ release_model(llm)