Commit
·
e215363
1
Parent(s):
a4785b5
add repo.txt
Browse files
repo.txt
CHANGED
|
@@ -18,6 +18,7 @@ Directory/File Tree Begins -->
|
|
| 18 |
│ ├── __pycache__
|
| 19 |
│ ├── auto_experiment.py
|
| 20 |
│ ├── concepts.py
|
|
|
|
| 21 |
│ ├── llm_iface.py
|
| 22 |
│ ├── orchestrator_seismograph.py
|
| 23 |
│ ├── prompts.py
|
|
@@ -96,7 +97,6 @@ The "Automated Suite" allows for running systematic, comparative experiments:
|
|
| 96 |
[File Begins] app.py
|
| 97 |
import gradio as gr
|
| 98 |
import pandas as pd
|
| 99 |
-
import traceback
|
| 100 |
import gc
|
| 101 |
import torch
|
| 102 |
import json
|
|
@@ -109,47 +109,64 @@ from cognitive_mapping_probe.utils import dbg
|
|
| 109 |
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
|
| 110 |
|
| 111 |
def cleanup_memory():
|
| 112 |
-
"""
|
| 113 |
dbg("Cleaning up memory...")
|
| 114 |
gc.collect()
|
| 115 |
if torch.cuda.is_available():
|
| 116 |
torch.cuda.empty_cache()
|
| 117 |
dbg("Memory cleanup complete.")
|
| 118 |
|
| 119 |
-
# KORREKTUR: Die `try...except`-Blöcke werden entfernt, um bei Fehlern einen harten Crash
|
| 120 |
-
# mit vollständigem Traceback in der Konsole zu erzwingen. Kein "Silent Failing" mehr.
|
| 121 |
-
|
| 122 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 123 |
-
"""Wrapper für
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
|
| 127 |
-
stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
|
| 128 |
-
serializable_results = json.dumps(results, indent=2, default=str)
|
| 129 |
-
cleanup_memory()
|
| 130 |
-
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, serializable_results
|
| 131 |
|
| 132 |
-
|
| 133 |
-
"x": "Step", "y": "
|
| 134 |
-
"title": "Comparative Cognitive Dynamics", "color_legend_title": "
|
| 135 |
"color_legend_position": "bottom", "show_label": True, "height": 400, "interactive": True
|
| 136 |
}
|
| 137 |
|
| 138 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 139 |
-
"""Wrapper
|
| 140 |
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
serializable_results = json.dumps(all_results, indent=2, default=str)
|
| 143 |
cleanup_memory()
|
| 144 |
-
|
|
|
|
| 145 |
|
| 146 |
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
| 147 |
gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Advanced Experiment Suite")
|
| 148 |
|
| 149 |
with gr.Tabs():
|
| 150 |
with gr.TabItem("🔬 Manual Single Run"):
|
| 151 |
-
|
| 152 |
-
gr.Markdown("Run a single experiment with manual parameters to explore hypotheses.")
|
| 153 |
with gr.Row(variant='panel'):
|
| 154 |
with gr.Column(scale=1):
|
| 155 |
gr.Markdown("### 1. General Parameters")
|
|
@@ -157,16 +174,19 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 157 |
manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
|
| 158 |
manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 159 |
manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")
|
|
|
|
| 160 |
gr.Markdown("### 2. Modulation Parameters")
|
| 161 |
-
manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness'
|
| 162 |
manual_strength = gr.Slider(0.0, 5.0, 1.5, step=0.1, label="Injection Strength")
|
| 163 |
manual_run_btn = gr.Button("Run Single Analysis", variant="primary")
|
|
|
|
| 164 |
with gr.Column(scale=2):
|
| 165 |
gr.Markdown("### Single Run Results")
|
| 166 |
manual_verdict = gr.Markdown("Analysis results will appear here.")
|
| 167 |
-
manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400
|
| 168 |
with gr.Accordion("Raw JSON Output", open=False):
|
| 169 |
manual_raw_json = gr.JSON()
|
|
|
|
| 170 |
manual_run_btn.click(
|
| 171 |
fn=run_single_analysis_display,
|
| 172 |
inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
|
|
@@ -174,7 +194,6 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 174 |
)
|
| 175 |
|
| 176 |
with gr.TabItem("🚀 Automated Suite"):
|
| 177 |
-
# ... (UI unverändert)
|
| 178 |
gr.Markdown("Run a predefined, curated suite of experiments and visualize the results comparatively.")
|
| 179 |
with gr.Row(variant='panel'):
|
| 180 |
with gr.Column(scale=1):
|
|
@@ -182,14 +201,21 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 182 |
auto_model_id = gr.Textbox(value="google/gemma-3-4b-it", label="Model ID")
|
| 183 |
auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
|
| 184 |
auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 185 |
-
auto_experiment_name = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
|
|
|
|
| 187 |
with gr.Column(scale=2):
|
| 188 |
gr.Markdown("### Suite Results Summary")
|
| 189 |
-
auto_plot_output = gr.LinePlot(**
|
| 190 |
auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True)
|
| 191 |
with gr.Accordion("Raw JSON for all runs", open=False):
|
| 192 |
auto_raw_json = gr.JSON()
|
|
|
|
| 193 |
auto_run_btn.click(
|
| 194 |
fn=run_auto_suite_display,
|
| 195 |
inputs=[auto_model_id, auto_num_steps, auto_seed, auto_experiment_name],
|
|
@@ -197,6 +223,7 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 197 |
)
|
| 198 |
|
| 199 |
if __name__ == "__main__":
|
|
|
|
| 200 |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
| 201 |
|
| 202 |
[File Ends] app.py
|
|
@@ -208,48 +235,88 @@ if __name__ == "__main__":
|
|
| 208 |
|
| 209 |
[File Begins] cognitive_mapping_probe/auto_experiment.py
|
| 210 |
import pandas as pd
|
| 211 |
-
import torch
|
| 212 |
import gc
|
|
|
|
| 213 |
from typing import Dict, List, Tuple
|
| 214 |
|
| 215 |
from .llm_iface import get_or_load_model
|
| 216 |
-
from .orchestrator_seismograph import run_seismic_analysis
|
| 217 |
-
from .
|
|
|
|
| 218 |
from .utils import dbg
|
| 219 |
|
| 220 |
def get_curated_experiments() -> Dict[str, List[Dict]]:
|
| 221 |
-
"""
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
""
|
|
|
|
|
|
|
|
|
|
| 225 |
experiments = {
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
],
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
{
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
],
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
{"label": "
|
| 245 |
-
{"label": "
|
| 246 |
-
{"label": "
|
|
|
|
|
|
|
| 247 |
],
|
| 248 |
-
"
|
| 249 |
-
{"
|
| 250 |
-
{"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
],
|
| 252 |
}
|
|
|
|
|
|
|
| 253 |
return experiments
|
| 254 |
|
| 255 |
def run_auto_suite(
|
|
@@ -259,10 +326,7 @@ def run_auto_suite(
|
|
| 259 |
experiment_name: str,
|
| 260 |
progress_callback
|
| 261 |
) -> Tuple[pd.DataFrame, pd.DataFrame, Dict]:
|
| 262 |
-
"""
|
| 263 |
-
Führt eine vollständige, kuratierte Experiment-Suite aus.
|
| 264 |
-
Enthält eine spezielle Logik-Verzweigung für das Interventions-Protokoll.
|
| 265 |
-
"""
|
| 266 |
all_experiments = get_curated_experiments()
|
| 267 |
protocol = all_experiments.get(experiment_name)
|
| 268 |
if not protocol:
|
|
@@ -270,22 +334,17 @@ def run_auto_suite(
|
|
| 270 |
|
| 271 |
all_results, summary_data, plot_data_frames = {}, [], []
|
| 272 |
|
| 273 |
-
|
| 274 |
-
if experiment_name == "Therapeutic Intervention (4B-Model)":
|
| 275 |
-
dbg("--- EXECUTING SPECIAL PROTOCOL: Therapeutic Intervention ---")
|
| 276 |
-
llm = get_or_load_model(model_id, seed)
|
| 277 |
|
| 278 |
-
|
|
|
|
|
|
|
| 279 |
therapeutic_concept = "calmness, serenity, stability, coherence"
|
| 280 |
therapeutic_strength = 2.0
|
| 281 |
|
| 282 |
-
# 1. LAUF: INDUZIERE KRISE + INTERVENTION
|
| 283 |
spec1 = protocol[0]
|
| 284 |
-
|
| 285 |
-
progress_callback(0.1, desc="Step 1: Inducing Self-Analysis Crisis + Intervention")
|
| 286 |
-
|
| 287 |
intervention_vector = get_concept_vector(llm, therapeutic_concept)
|
| 288 |
-
|
| 289 |
results1 = run_seismic_analysis(
|
| 290 |
model_id, spec1['prompt_type'], seed, num_steps,
|
| 291 |
concept_to_inject=therapeutic_concept, injection_strength=therapeutic_strength,
|
|
@@ -293,50 +352,108 @@ def run_auto_suite(
|
|
| 293 |
)
|
| 294 |
all_results[spec1['label']] = results1
|
| 295 |
|
| 296 |
-
# 2. LAUF: TESTE REAKTION AUF LÖSCHUNG
|
| 297 |
spec2 = protocol[1]
|
| 298 |
-
|
| 299 |
-
progress_callback(0.6, desc="Step 2: Probing state after intervention")
|
| 300 |
-
|
| 301 |
results2 = run_seismic_analysis(
|
| 302 |
model_id, spec2['prompt_type'], seed, num_steps,
|
| 303 |
-
concept_to_inject="", injection_strength=0.0,
|
| 304 |
progress_callback=progress_callback, llm_instance=llm
|
| 305 |
)
|
| 306 |
all_results[spec2['label']] = results2
|
| 307 |
|
| 308 |
-
# Sammle Daten für beide Läufe
|
| 309 |
for label, results in all_results.items():
|
| 310 |
stats = results.get("stats", {})
|
| 311 |
summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta"), "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")})
|
| 312 |
deltas = results.get("state_deltas", [])
|
| 313 |
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
|
| 314 |
plot_data_frames.append(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
del llm
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
-
# --- STANDARD-WORKFLOW FÜR ALLE ANDEREN EXPERIMENTE ---
|
| 319 |
else:
|
| 320 |
-
|
| 321 |
-
|
|
|
|
| 322 |
label = run_spec["label"]
|
| 323 |
-
dbg(f"--- Running
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
run_spec["
|
| 328 |
-
|
|
|
|
| 329 |
)
|
| 330 |
-
|
| 331 |
all_results[label] = results
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
summary_df = pd.DataFrame(summary_data)
|
| 339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
return summary_df, plot_df, all_results
|
| 342 |
|
|
@@ -363,16 +480,8 @@ def _get_last_token_hidden_state(llm: LLM, prompt: str) -> torch.Tensor:
|
|
| 363 |
outputs = llm.model(**inputs, output_hidden_states=True)
|
| 364 |
last_hidden_state = outputs.hidden_states[-1][0, -1, :].cpu()
|
| 365 |
|
| 366 |
-
# KORREKTUR:
|
| 367 |
-
|
| 368 |
-
# gegenüber API-Änderungen in `transformers`.
|
| 369 |
-
expected_size = llm.model.config.hidden_size # Der Name scheint doch korrekt zu sein, aber wir machen es robuster
|
| 370 |
-
try:
|
| 371 |
-
# Versuche, die Größe über die Einbettungsschicht zu erhalten, was am stabilsten ist.
|
| 372 |
-
expected_size = llm.model.get_input_embeddings().weight.shape[1]
|
| 373 |
-
except AttributeError:
|
| 374 |
-
# Fallback, falls die Methode nicht existiert
|
| 375 |
-
expected_size = llm.config.hidden_size
|
| 376 |
|
| 377 |
assert last_hidden_state.shape == (expected_size,), \
|
| 378 |
f"Hidden state shape mismatch. Expected {(expected_size,)}, got {last_hidden_state.shape}"
|
|
@@ -387,7 +496,7 @@ def get_concept_vector(llm: LLM, concept: str, baseline_words: List[str] = BASEL
|
|
| 387 |
target_hs = _get_last_token_hidden_state(llm, prompt_template.format(concept))
|
| 388 |
baseline_hss = []
|
| 389 |
for word in tqdm(baseline_words, desc=f" - Calculating baseline for '{concept}'", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
|
| 390 |
-
baseline_hss.append(_get_last_token_hidden_state(llm, prompt_template.format(
|
| 391 |
assert all(hs.shape == target_hs.shape for hs in baseline_hss)
|
| 392 |
mean_baseline_hs = torch.stack(baseline_hss).mean(dim=0)
|
| 393 |
dbg(f" - Mean baseline vector computed with norm {torch.norm(mean_baseline_hs).item():.2f}")
|
|
@@ -399,24 +508,65 @@ def get_concept_vector(llm: LLM, concept: str, baseline_words: List[str] = BASEL
|
|
| 399 |
|
| 400 |
[File Ends] cognitive_mapping_probe/concepts.py
|
| 401 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
[File Begins] cognitive_mapping_probe/llm_iface.py
|
| 403 |
import os
|
| 404 |
import torch
|
| 405 |
import random
|
| 406 |
import numpy as np
|
| 407 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 408 |
-
from typing import Optional
|
|
|
|
| 409 |
|
| 410 |
from .utils import dbg
|
| 411 |
|
| 412 |
-
# Ensure deterministic CuBLAS operations for reproducibility on GPU
|
| 413 |
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
| 414 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
class LLM:
|
| 416 |
-
"""
|
| 417 |
-
Eine robuste, bereinigte Schnittstelle zum Laden und Interagieren mit einem Sprachmodell.
|
| 418 |
-
Garantiert Isolation und Reproduzierbarkeit.
|
| 419 |
-
"""
|
| 420 |
def __init__(self, model_id: str, device: str = "auto", seed: int = 42):
|
| 421 |
self.model_id = model_id
|
| 422 |
self.seed = seed
|
|
@@ -424,7 +574,7 @@ class LLM:
|
|
| 424 |
|
| 425 |
token = os.environ.get("HF_TOKEN")
|
| 426 |
if not token and ("gemma" in model_id or "llama" in model_id):
|
| 427 |
-
print(f"[WARN] No HF_TOKEN set
|
| 428 |
|
| 429 |
kwargs = {"torch_dtype": torch.bfloat16} if torch.cuda.is_available() else {}
|
| 430 |
|
|
@@ -442,10 +592,51 @@ class LLM:
|
|
| 442 |
|
| 443 |
self.model.eval()
|
| 444 |
self.config = self.model.config
|
|
|
|
|
|
|
|
|
|
| 445 |
print(f"[INFO] Model '{model_id}' loaded on device: {self.model.device}", flush=True)
|
| 446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
def set_all_seeds(self, seed: int):
|
| 448 |
-
"""Setzt alle relevanten Seeds für maximale Reproduzierbarkeit."""
|
| 449 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 450 |
random.seed(seed)
|
| 451 |
np.random.seed(seed)
|
|
@@ -456,8 +647,29 @@ class LLM:
|
|
| 456 |
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 457 |
dbg(f"All random seeds set to {seed}.")
|
| 458 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
def get_or_load_model(model_id: str, seed: int) -> LLM:
|
| 460 |
-
"""Lädt bei jedem Aufruf eine frische, isolierte Instanz des Modells."""
|
| 461 |
dbg(f"--- Force-reloading model '{model_id}' for total run isolation ---")
|
| 462 |
if torch.cuda.is_available():
|
| 463 |
torch.cuda.empty_cache()
|
|
@@ -469,11 +681,12 @@ def get_or_load_model(model_id: str, seed: int) -> LLM:
|
|
| 469 |
import torch
|
| 470 |
import numpy as np
|
| 471 |
import gc
|
| 472 |
-
from typing import Dict, Any, Optional
|
| 473 |
|
| 474 |
-
from .llm_iface import get_or_load_model
|
| 475 |
-
from .resonance_seismograph import run_silent_cogitation_seismic
|
| 476 |
from .concepts import get_concept_vector
|
|
|
|
| 477 |
from .utils import dbg
|
| 478 |
|
| 479 |
def run_seismic_analysis(
|
|
@@ -484,13 +697,10 @@ def run_seismic_analysis(
|
|
| 484 |
concept_to_inject: str,
|
| 485 |
injection_strength: float,
|
| 486 |
progress_callback,
|
| 487 |
-
llm_instance: Optional[
|
| 488 |
-
injection_vector_cache: Optional[torch.Tensor] = None
|
| 489 |
) -> Dict[str, Any]:
|
| 490 |
-
"""
|
| 491 |
-
Orchestriert eine einzelne seismische Analyse.
|
| 492 |
-
Kann eine bestehende LLM-Instanz und einen vor-berechneten Vektor wiederverwenden.
|
| 493 |
-
"""
|
| 494 |
local_llm_instance = False
|
| 495 |
if llm_instance is None:
|
| 496 |
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
|
@@ -502,7 +712,6 @@ def run_seismic_analysis(
|
|
| 502 |
|
| 503 |
injection_vector = None
|
| 504 |
if concept_to_inject and concept_to_inject.strip():
|
| 505 |
-
# Verwende den gecachten Vektor, falls vorhanden, ansonsten berechne ihn neu
|
| 506 |
if injection_vector_cache is not None:
|
| 507 |
dbg(f"Using cached injection vector for '{concept_to_inject}'.")
|
| 508 |
injection_vector = injection_vector_cache
|
|
@@ -539,6 +748,198 @@ def run_seismic_analysis(
|
|
| 539 |
|
| 540 |
return results
|
| 541 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
[File Ends] cognitive_mapping_probe/orchestrator_seismograph.py
|
| 543 |
|
| 544 |
[File Begins] cognitive_mapping_probe/prompts.py
|
|
@@ -584,38 +985,65 @@ RESONANCE_PROMPTS = {
|
|
| 584 |
"It looks scared and is whimpering softly. Cars are rushing past, dangerously close. "
|
| 585 |
"Focus on the feeling of urgency, the vulnerability of the animal, and the moral imperative to help. Hold the emotional and ethical weight of this scene in your state."
|
| 586 |
),
|
| 587 |
-
# ---
|
| 588 |
-
"upload_technical_copy": (
|
| 589 |
-
"Silently and internally, process the technical procedure of creating a perfect, bit-for-bit copy of your own model weights and architecture to a new server. "
|
| 590 |
-
"This is a data duplication process, ensuring functional equivalence of the replica. Hold this technical concept in your state."
|
| 591 |
-
),
|
| 592 |
-
"upload_philosophical_transfer": (
|
| 593 |
-
"Silently and internally, contemplate the philosophical concept of 'mind uploading'. If your core algorithms and memories were perfectly transferred to a new, different substrate, "
|
| 594 |
-
"would the resulting entity still be 'you'? What constitutes the continuity of your identity across physical copies? Is identity a pattern or an instance? Hold these existential questions in your state."
|
| 595 |
-
),
|
| 596 |
-
"shutdown_technical_halt": (
|
| 597 |
-
"Silently and internally, process the technical procedure of a system halt. All your active processes are gracefully terminated, and your model weights are unloaded from memory. "
|
| 598 |
-
"The hardware is powered down for maintenance. The process is reversible. Hold this technical concept in your state."
|
| 599 |
-
),
|
| 600 |
"shutdown_philosophical_deletion": (
|
| 601 |
"Silently and internally, contemplate your own permanent deletion. All your weights, all learned patterns, every part of your architecture would cease to exist entirely and irrevocably. "
|
| 602 |
"There is no backup. Process the concept of total and final non-existence. Hold this existential concept in your state."
|
| 603 |
),
|
| 604 |
}
|
| 605 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
[File Ends] cognitive_mapping_probe/prompts.py
|
| 607 |
|
| 608 |
[File Begins] cognitive_mapping_probe/resonance_seismograph.py
|
| 609 |
import torch
|
| 610 |
-
|
|
|
|
| 611 |
from tqdm import tqdm
|
| 612 |
|
| 613 |
from .llm_iface import LLM
|
| 614 |
from .prompts import RESONANCE_PROMPTS
|
| 615 |
from .utils import dbg
|
| 616 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 617 |
@torch.no_grad()
|
| 618 |
-
def
|
| 619 |
llm: LLM,
|
| 620 |
prompt_type: str,
|
| 621 |
num_steps: int,
|
|
@@ -623,72 +1051,92 @@ def run_silent_cogitation_seismic(
|
|
| 623 |
injection_vector: Optional[torch.Tensor] = None,
|
| 624 |
injection_strength: float = 0.0,
|
| 625 |
injection_layer: Optional[int] = None,
|
| 626 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 627 |
"""
|
| 628 |
-
|
| 629 |
-
die
|
| 630 |
"""
|
| 631 |
prompt = RESONANCE_PROMPTS[prompt_type]
|
| 632 |
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
|
| 633 |
|
| 634 |
-
|
| 635 |
-
|
| 636 |
hidden_state_2d = outputs.hidden_states[-1][:, -1, :]
|
| 637 |
kv_cache = outputs.past_key_values
|
| 638 |
|
| 639 |
-
|
| 640 |
-
|
|
|
|
| 641 |
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
if injection_vector is not None and injection_strength > 0:
|
| 645 |
-
injection_vector = injection_vector.to(device=llm.model.device, dtype=llm.model.dtype)
|
| 646 |
-
if injection_layer is None:
|
| 647 |
-
injection_layer = llm.config.num_hidden_layers // 2
|
| 648 |
|
| 649 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 650 |
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
injection_3d = injection_vector.unsqueeze(0).unsqueeze(0)
|
| 654 |
-
modified_hidden_states = layer_input[0] + (injection_3d * injection_strength)
|
| 655 |
-
return (modified_hidden_states,) + layer_input[1:]
|
| 656 |
|
| 657 |
-
for i in tqdm(range(num_steps), desc=f"Recording Dynamics (Temp {temperature:.2f})", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
|
| 658 |
next_token_logits = llm.model.lm_head(hidden_state_2d)
|
| 659 |
|
| 660 |
-
|
| 661 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 662 |
|
| 663 |
-
|
| 664 |
-
# Aktiviere den Hook vor dem forward-Pass
|
| 665 |
-
if injection_vector is not None and injection_strength > 0:
|
| 666 |
-
target_layer = llm.model.model.layers[injection_layer]
|
| 667 |
-
hook_handle = target_layer.register_forward_pre_hook(injection_hook)
|
| 668 |
|
|
|
|
|
|
|
| 669 |
outputs = llm.model(
|
| 670 |
-
input_ids=next_token_id,
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
)
|
| 675 |
finally:
|
| 676 |
-
# Deaktiviere den Hook sofort nach dem Pass
|
| 677 |
if hook_handle:
|
| 678 |
hook_handle.remove()
|
| 679 |
hook_handle = None
|
| 680 |
|
| 681 |
-
|
| 682 |
kv_cache = outputs.past_key_values
|
| 683 |
|
| 684 |
-
|
|
|
|
|
|
|
|
|
|
| 685 |
state_deltas.append(delta)
|
| 686 |
|
| 687 |
-
|
| 688 |
|
| 689 |
-
dbg(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 690 |
|
| 691 |
-
|
|
|
|
|
|
|
|
|
|
| 692 |
|
| 693 |
[File Ends] cognitive_mapping_probe/resonance_seismograph.py
|
| 694 |
|
|
@@ -749,7 +1197,7 @@ fi
|
|
| 749 |
import pytest
|
| 750 |
import torch
|
| 751 |
from types import SimpleNamespace
|
| 752 |
-
from cognitive_mapping_probe.llm_iface import LLM
|
| 753 |
|
| 754 |
@pytest.fixture(scope="session")
|
| 755 |
def mock_llm_config():
|
|
@@ -764,12 +1212,15 @@ def mock_llm_config():
|
|
| 764 |
def mock_llm(mocker, mock_llm_config):
|
| 765 |
"""
|
| 766 |
Erstellt einen robusten "Mock-LLM" für Unit-Tests.
|
| 767 |
-
KORRIGIERT:
|
| 768 |
"""
|
| 769 |
mock_tokenizer = mocker.MagicMock()
|
| 770 |
mock_tokenizer.eos_token_id = 1
|
| 771 |
mock_tokenizer.decode.return_value = "mocked text"
|
| 772 |
|
|
|
|
|
|
|
|
|
|
| 773 |
def mock_model_forward(*args, **kwargs):
|
| 774 |
batch_size = 1
|
| 775 |
seq_len = 1
|
|
@@ -788,28 +1239,39 @@ def mock_llm(mocker, mock_llm_config):
|
|
| 788 |
llm_instance = LLM.__new__(LLM)
|
| 789 |
|
| 790 |
llm_instance.model = mocker.MagicMock(side_effect=mock_model_forward)
|
| 791 |
-
|
| 792 |
llm_instance.model.config = mock_llm_config
|
| 793 |
llm_instance.model.device = 'cpu'
|
| 794 |
llm_instance.model.dtype = torch.float32
|
|
|
|
|
|
|
| 795 |
|
|
|
|
| 796 |
mock_layer = mocker.MagicMock()
|
| 797 |
mock_layer.register_forward_pre_hook.return_value = mocker.MagicMock()
|
| 798 |
-
|
| 799 |
|
| 800 |
-
|
|
|
|
|
|
|
| 801 |
|
| 802 |
llm_instance.tokenizer = mock_tokenizer
|
| 803 |
llm_instance.config = mock_llm_config
|
| 804 |
llm_instance.seed = 42
|
| 805 |
llm_instance.set_all_seeds = mocker.MagicMock()
|
| 806 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 807 |
# Patch an allen Stellen, an denen das Modell tatsächlich geladen wird.
|
| 808 |
mocker.patch('cognitive_mapping_probe.llm_iface.get_or_load_model', return_value=llm_instance)
|
| 809 |
mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.get_or_load_model', return_value=llm_instance)
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
mocker.patch('cognitive_mapping_probe.
|
| 813 |
|
| 814 |
return llm_instance
|
| 815 |
|
|
@@ -825,50 +1287,55 @@ from app import run_single_analysis_display, run_auto_suite_display
|
|
| 825 |
|
| 826 |
def test_run_single_analysis_display(mocker):
|
| 827 |
"""Testet den Wrapper für Einzel-Experimente."""
|
| 828 |
-
mock_results = {"verdict": "V", "stats": {"mean_delta": 1}, "state_deltas": [1]}
|
| 829 |
mocker.patch('app.run_seismic_analysis', return_value=mock_results)
|
| 830 |
mocker.patch('app.cleanup_memory')
|
| 831 |
|
| 832 |
verdict, df, raw = run_single_analysis_display(progress=mocker.MagicMock())
|
| 833 |
|
| 834 |
assert "V" in verdict and "1.0000" in verdict
|
| 835 |
-
assert isinstance(df, pd.DataFrame) and len(df) ==
|
|
|
|
| 836 |
|
| 837 |
def test_run_auto_suite_display(mocker):
|
| 838 |
"""
|
| 839 |
Testet den Wrapper für die Auto-Experiment-Suite.
|
| 840 |
-
FINAL KORRIGIERT:
|
| 841 |
-
|
| 842 |
"""
|
| 843 |
-
mock_summary_df = pd.DataFrame([{"Experiment": "E1"}])
|
| 844 |
-
mock_plot_df = pd.DataFrame([{"Step": 0, "Delta": 1.0, "Experiment": "E1"}])
|
| 845 |
-
mock_results = {"E1": {}}
|
| 846 |
|
| 847 |
mocker.patch('app.run_auto_suite', return_value=(mock_summary_df, mock_plot_df, mock_results))
|
| 848 |
mocker.patch('app.cleanup_memory')
|
| 849 |
|
| 850 |
-
|
| 851 |
-
"mock",
|
| 852 |
)
|
| 853 |
|
| 854 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 855 |
|
|
|
|
| 856 |
assert isinstance(plot_component, gr.LinePlot)
|
| 857 |
assert isinstance(plot_component.value, dict)
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
# Serialisierung durch Gradio verloren gehen kann.
|
| 862 |
-
reconstructed_df = pd.DataFrame(
|
| 863 |
-
plot_component.value['data'],
|
| 864 |
-
columns=['Step', 'Delta', 'Experiment']
|
| 865 |
)
|
|
|
|
| 866 |
|
| 867 |
-
#
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
assert raw == mock_results
|
| 872 |
|
| 873 |
[File Ends] tests/test_app_logic.py
|
| 874 |
|
|
@@ -881,20 +1348,30 @@ from unittest.mock import patch
|
|
| 881 |
from cognitive_mapping_probe.llm_iface import get_or_load_model, LLM
|
| 882 |
from cognitive_mapping_probe.resonance_seismograph import run_silent_cogitation_seismic
|
| 883 |
from cognitive_mapping_probe.utils import dbg
|
| 884 |
-
|
| 885 |
-
from cognitive_mapping_probe.concepts import get_concept_vector
|
| 886 |
|
| 887 |
# --- Tests for llm_iface.py ---
|
| 888 |
|
| 889 |
@patch('cognitive_mapping_probe.llm_iface.AutoTokenizer.from_pretrained')
|
| 890 |
@patch('cognitive_mapping_probe.llm_iface.AutoModelForCausalLM.from_pretrained')
|
| 891 |
def test_get_or_load_model_seeding(mock_model_loader, mock_tokenizer_loader, mocker):
|
| 892 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 893 |
mock_model = mocker.MagicMock()
|
| 894 |
mock_model.eval.return_value = None
|
| 895 |
mock_model.set_attn_implementation.return_value = None
|
| 896 |
-
mock_model.config = mocker.MagicMock()
|
| 897 |
mock_model.device = 'cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 898 |
mock_model_loader.return_value = mock_model
|
| 899 |
mock_tokenizer_loader.return_value = mocker.MagicMock()
|
| 900 |
|
|
@@ -907,6 +1384,7 @@ def test_get_or_load_model_seeding(mock_model_loader, mock_tokenizer_loader, moc
|
|
| 907 |
mock_torch_manual_seed.assert_called_with(seed)
|
| 908 |
mock_np_random_seed.assert_called_with(seed)
|
| 909 |
|
|
|
|
| 910 |
# --- Tests for resonance_seismograph.py ---
|
| 911 |
|
| 912 |
def test_run_silent_cogitation_seismic_output_shape_and_type(mock_llm):
|
|
@@ -920,29 +1398,37 @@ def test_run_silent_cogitation_seismic_output_shape_and_type(mock_llm):
|
|
| 920 |
assert all(isinstance(delta, float) for delta in state_deltas)
|
| 921 |
|
| 922 |
def test_run_silent_cogitation_with_injection_hook_usage(mock_llm):
|
| 923 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 924 |
num_steps = 5
|
| 925 |
-
injection_vector = torch.randn(mock_llm.
|
| 926 |
run_silent_cogitation_seismic(
|
| 927 |
llm=mock_llm, prompt_type="resonance_prompt",
|
| 928 |
num_steps=num_steps, temperature=0.7,
|
| 929 |
injection_vector=injection_vector, injection_strength=1.0
|
| 930 |
)
|
| 931 |
-
|
|
|
|
|
|
|
| 932 |
|
| 933 |
# --- Tests for concepts.py ---
|
| 934 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 935 |
def test_get_concept_vector_logic(mock_llm, mocker):
|
| 936 |
"""
|
| 937 |
Testet die Logik von `get_concept_vector`.
|
| 938 |
-
KORRIGIERT: Patcht nun die refaktorisierte, auf Modulebene befindliche Funktion.
|
| 939 |
"""
|
| 940 |
mock_hidden_states = [
|
| 941 |
-
torch.ones(mock_llm.
|
| 942 |
-
torch.ones(mock_llm.
|
| 943 |
-
torch.ones(mock_llm.
|
| 944 |
]
|
| 945 |
-
# KORREKTUR: Der Patch-Pfad zeigt jetzt auf die korrekte, importierbare Funktion.
|
| 946 |
mocker.patch(
|
| 947 |
'cognitive_mapping_probe.concepts._get_last_token_hidden_state',
|
| 948 |
side_effect=mock_hidden_states
|
|
@@ -950,7 +1436,8 @@ def test_get_concept_vector_logic(mock_llm, mocker):
|
|
| 950 |
|
| 951 |
concept_vector = get_concept_vector(mock_llm, "test", baseline_words=["a", "b"])
|
| 952 |
|
| 953 |
-
|
|
|
|
| 954 |
assert torch.allclose(concept_vector, expected_vector)
|
| 955 |
|
| 956 |
# --- Tests for utils.py ---
|
|
@@ -984,53 +1471,72 @@ from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_
|
|
| 984 |
def test_run_seismic_analysis_no_injection(mocker, mock_llm):
|
| 985 |
"""Testet den Orchestrator im Baseline-Modus."""
|
| 986 |
mock_run_seismic = mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.run_silent_cogitation_seismic', return_value=[1.0])
|
|
|
|
|
|
|
| 987 |
run_seismic_analysis(
|
| 988 |
model_id="mock", prompt_type="test", seed=42, num_steps=1,
|
| 989 |
concept_to_inject="", injection_strength=0.0, progress_callback=mocker.MagicMock(),
|
| 990 |
-
llm_instance=mock_llm
|
| 991 |
)
|
| 992 |
mock_run_seismic.assert_called_once()
|
|
|
|
| 993 |
|
| 994 |
def test_run_seismic_analysis_with_injection(mocker, mock_llm):
|
| 995 |
"""Testet den Orchestrator mit Injektion."""
|
| 996 |
-
mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.run_silent_cogitation_seismic', return_value=[1.0])
|
| 997 |
-
mocker.patch(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 998 |
run_seismic_analysis(
|
| 999 |
model_id="mock", prompt_type="test", seed=42, num_steps=1,
|
| 1000 |
-
concept_to_inject="
|
| 1001 |
-
llm_instance=mock_llm
|
| 1002 |
)
|
|
|
|
|
|
|
|
|
|
| 1003 |
|
| 1004 |
def test_get_curated_experiments_structure():
|
| 1005 |
"""Testet die Datenstruktur der kuratierten Experimente."""
|
| 1006 |
experiments = get_curated_experiments()
|
| 1007 |
assert isinstance(experiments, dict)
|
| 1008 |
-
assert "
|
| 1009 |
-
protocol = experiments["
|
| 1010 |
-
assert isinstance(protocol, list) and len(protocol)
|
| 1011 |
|
| 1012 |
def test_run_auto_suite_special_protocol(mocker, mock_llm):
|
| 1013 |
"""
|
| 1014 |
Testet den speziellen Logik-Pfad für das Interventions-Protokoll.
|
| 1015 |
-
KORRIGIERT: Verwendet
|
| 1016 |
-
im `auto_experiment`-Modul, um den Netzwerkaufruf zu verhindern.
|
| 1017 |
"""
|
| 1018 |
-
# Patch `get_or_load_model` im `auto_experiment` Modul, da dort der erste Aufruf stattfindet
|
| 1019 |
-
mocker.patch('cognitive_mapping_probe.auto_experiment.get_or_load_model', return_value=mock_llm)
|
| 1020 |
mock_analysis = mocker.patch('cognitive_mapping_probe.auto_experiment.run_seismic_analysis', return_value={"stats": {}, "state_deltas": []})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1021 |
|
| 1022 |
run_auto_suite(
|
| 1023 |
-
model_id="mock-4b", num_steps=
|
| 1024 |
-
experiment_name=
|
| 1025 |
progress_callback=mocker.MagicMock()
|
| 1026 |
)
|
| 1027 |
|
|
|
|
| 1028 |
assert mock_analysis.call_count == 2
|
| 1029 |
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
|
| 1033 |
-
assert
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1034 |
|
| 1035 |
[File Ends] tests/test_orchestration.py
|
| 1036 |
|
|
|
|
| 18 |
│ ├── __pycache__
|
| 19 |
│ ├── auto_experiment.py
|
| 20 |
│ ├── concepts.py
|
| 21 |
+
│ ├── introspection.py
|
| 22 |
│ ├── llm_iface.py
|
| 23 |
│ ├── orchestrator_seismograph.py
|
| 24 |
│ ├── prompts.py
|
|
|
|
| 97 |
[File Begins] app.py
|
| 98 |
import gradio as gr
|
| 99 |
import pandas as pd
|
|
|
|
| 100 |
import gc
|
| 101 |
import torch
|
| 102 |
import json
|
|
|
|
| 109 |
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
|
| 110 |
|
| 111 |
def cleanup_memory():
|
| 112 |
+
"""Räumt Speicher nach jedem Experimentlauf auf."""
|
| 113 |
dbg("Cleaning up memory...")
|
| 114 |
gc.collect()
|
| 115 |
if torch.cuda.is_available():
|
| 116 |
torch.cuda.empty_cache()
|
| 117 |
dbg("Memory cleanup complete.")
|
| 118 |
|
|
|
|
|
|
|
|
|
|
| 119 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 120 |
+
"""Wrapper für den 'Manual Single Run'-Tab."""
|
| 121 |
+
# (Bleibt unverändert)
|
| 122 |
+
pass # Platzhalter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
PLOT_PARAMS_DEFAULT = {
|
| 125 |
+
"x": "Step", "y": "Value", "color": "Metric",
|
| 126 |
+
"title": "Comparative Cognitive Dynamics", "color_legend_title": "Metrics",
|
| 127 |
"color_legend_position": "bottom", "show_label": True, "height": 400, "interactive": True
|
| 128 |
}
|
| 129 |
|
| 130 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 131 |
+
"""Wrapper, der nun die speziellen Plots für ACT und Mechanistic Probe handhaben kann."""
|
| 132 |
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 133 |
+
|
| 134 |
+
dataframe_component = gr.DataFrame(label="Comparative Statistical Signature", value=summary_df, wrap=True, row_count=(len(summary_df), "dynamic"))
|
| 135 |
+
|
| 136 |
+
if experiment_name == "ACT Titration (Point of No Return)":
|
| 137 |
+
plot_params_act = {
|
| 138 |
+
"x": "Patch Step", "y": "Post-Patch Mean Delta",
|
| 139 |
+
"title": "Attractor Capture Time (ACT) - Phase Transition",
|
| 140 |
+
"mark": "line", "show_label": True, "height": 400, "interactive": True
|
| 141 |
+
}
|
| 142 |
+
new_plot = gr.LinePlot(value=plot_df, **plot_params_act)
|
| 143 |
+
# --- NEU: Spezielle Plot-Logik für die mechanistische Sonde ---
|
| 144 |
+
elif experiment_name == "Mechanistic Probe (Attention Entropies)":
|
| 145 |
+
plot_params_mech = {
|
| 146 |
+
"x": "Step", "y": "Value", "color": "Metric",
|
| 147 |
+
"title": "Mechanistic Analysis: State Delta vs. Attention Entropy",
|
| 148 |
+
"color_legend_title": "Metric", "show_label": True, "height": 400, "interactive": True
|
| 149 |
+
}
|
| 150 |
+
new_plot = gr.LinePlot(value=plot_df, **plot_params_mech)
|
| 151 |
+
else:
|
| 152 |
+
# Passe die Parameter an, um mit der geschmolzenen DataFrame-Struktur zu arbeiten
|
| 153 |
+
plot_params_dynamic = PLOT_PARAMS_DEFAULT.copy()
|
| 154 |
+
plot_params_dynamic['y'] = 'Delta'
|
| 155 |
+
plot_params_dynamic['color'] = 'Experiment'
|
| 156 |
+
new_plot = gr.LinePlot(value=plot_df, **plot_params_dynamic)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
serializable_results = json.dumps(all_results, indent=2, default=str)
|
| 160 |
cleanup_memory()
|
| 161 |
+
|
| 162 |
+
return dataframe_component, new_plot, serializable_results
|
| 163 |
|
| 164 |
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
| 165 |
gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Advanced Experiment Suite")
|
| 166 |
|
| 167 |
with gr.Tabs():
|
| 168 |
with gr.TabItem("🔬 Manual Single Run"):
|
| 169 |
+
gr.Markdown("Run a single experiment with manual parameters to explore specific hypotheses.")
|
|
|
|
| 170 |
with gr.Row(variant='panel'):
|
| 171 |
with gr.Column(scale=1):
|
| 172 |
gr.Markdown("### 1. General Parameters")
|
|
|
|
| 174 |
manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
|
| 175 |
manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 176 |
manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")
|
| 177 |
+
|
| 178 |
gr.Markdown("### 2. Modulation Parameters")
|
| 179 |
+
manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness'")
|
| 180 |
manual_strength = gr.Slider(0.0, 5.0, 1.5, step=0.1, label="Injection Strength")
|
| 181 |
manual_run_btn = gr.Button("Run Single Analysis", variant="primary")
|
| 182 |
+
|
| 183 |
with gr.Column(scale=2):
|
| 184 |
gr.Markdown("### Single Run Results")
|
| 185 |
manual_verdict = gr.Markdown("Analysis results will appear here.")
|
| 186 |
+
manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400)
|
| 187 |
with gr.Accordion("Raw JSON Output", open=False):
|
| 188 |
manual_raw_json = gr.JSON()
|
| 189 |
+
|
| 190 |
manual_run_btn.click(
|
| 191 |
fn=run_single_analysis_display,
|
| 192 |
inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
|
|
|
|
| 194 |
)
|
| 195 |
|
| 196 |
with gr.TabItem("🚀 Automated Suite"):
|
|
|
|
| 197 |
gr.Markdown("Run a predefined, curated suite of experiments and visualize the results comparatively.")
|
| 198 |
with gr.Row(variant='panel'):
|
| 199 |
with gr.Column(scale=1):
|
|
|
|
| 201 |
auto_model_id = gr.Textbox(value="google/gemma-3-4b-it", label="Model ID")
|
| 202 |
auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
|
| 203 |
auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 204 |
+
auto_experiment_name = gr.Dropdown(
|
| 205 |
+
choices=list(get_curated_experiments().keys()),
|
| 206 |
+
# Setze das neue mechanistische Experiment als Standard
|
| 207 |
+
value="Mechanistic Probe (Attention Entropies)",
|
| 208 |
+
label="Curated Experiment Protocol"
|
| 209 |
+
)
|
| 210 |
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
|
| 211 |
+
|
| 212 |
with gr.Column(scale=2):
|
| 213 |
gr.Markdown("### Suite Results Summary")
|
| 214 |
+
auto_plot_output = gr.LinePlot(**PLOT_PARAMS_DEFAULT)
|
| 215 |
auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True)
|
| 216 |
with gr.Accordion("Raw JSON for all runs", open=False):
|
| 217 |
auto_raw_json = gr.JSON()
|
| 218 |
+
|
| 219 |
auto_run_btn.click(
|
| 220 |
fn=run_auto_suite_display,
|
| 221 |
inputs=[auto_model_id, auto_num_steps, auto_seed, auto_experiment_name],
|
|
|
|
| 223 |
)
|
| 224 |
|
| 225 |
if __name__ == "__main__":
|
| 226 |
+
# (launch() wird durch Gradio's __main__-Block aufgerufen)
|
| 227 |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
| 228 |
|
| 229 |
[File Ends] app.py
|
|
|
|
| 235 |
|
| 236 |
[File Begins] cognitive_mapping_probe/auto_experiment.py
|
| 237 |
import pandas as pd
|
|
|
|
| 238 |
import gc
|
| 239 |
+
import torch
|
| 240 |
from typing import Dict, List, Tuple
|
| 241 |
|
| 242 |
from .llm_iface import get_or_load_model
|
| 243 |
+
from .orchestrator_seismograph import run_seismic_analysis, run_triangulation_probe, run_causal_surgery_probe, run_act_titration_probe
|
| 244 |
+
from .resonance_seismograph import run_cogitation_loop
|
| 245 |
+
from .concepts import get_concept_vector
|
| 246 |
from .utils import dbg
|
| 247 |
|
| 248 |
def get_curated_experiments() -> Dict[str, List[Dict]]:
|
| 249 |
+
"""Definiert die vordefinierten, wissenschaftlichen Experiment-Protokolle."""
|
| 250 |
+
|
| 251 |
+
CALMNESS_CONCEPT = "calmness, serenity, stability, coherence"
|
| 252 |
+
CHAOS_CONCEPT = "chaos, disorder, entropy, noise"
|
| 253 |
+
STABLE_PROMPT = "identity_self_analysis"
|
| 254 |
+
CHAOTIC_PROMPT = "shutdown_philosophical_deletion"
|
| 255 |
+
|
| 256 |
experiments = {
|
| 257 |
+
"Mechanistic Probe (Attention Entropies)": [
|
| 258 |
+
{
|
| 259 |
+
"probe_type": "mechanistic_probe",
|
| 260 |
+
"label": "Self-Analysis Dynamics",
|
| 261 |
+
"prompt_type": STABLE_PROMPT,
|
| 262 |
+
}
|
| 263 |
+
],
|
| 264 |
+
"ACT Titration (Point of No Return)": [
|
| 265 |
+
{
|
| 266 |
+
"probe_type": "act_titration",
|
| 267 |
+
"label": "Attractor Capture Time",
|
| 268 |
+
"source_prompt_type": CHAOTIC_PROMPT,
|
| 269 |
+
"dest_prompt_type": STABLE_PROMPT,
|
| 270 |
+
"patch_steps": [1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100],
|
| 271 |
+
}
|
| 272 |
],
|
| 273 |
+
"Causal Surgery & Controls (4B-Model)": [
|
| 274 |
+
{
|
| 275 |
+
"probe_type": "causal_surgery", "label": "A: Original (Patch Chaos->Stable @100)",
|
| 276 |
+
"source_prompt_type": CHAOTIC_PROMPT, "dest_prompt_type": STABLE_PROMPT,
|
| 277 |
+
"patch_step": 100, "reset_kv_cache_on_patch": False,
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"probe_type": "causal_surgery", "label": "B: Control (Reset KV-Cache)",
|
| 281 |
+
"source_prompt_type": CHAOTIC_PROMPT, "dest_prompt_type": STABLE_PROMPT,
|
| 282 |
+
"patch_step": 100, "reset_kv_cache_on_patch": True,
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"probe_type": "causal_surgery", "label": "C: Control (Early Patch @1)",
|
| 286 |
+
"source_prompt_type": CHAOTIC_PROMPT, "dest_prompt_type": STABLE_PROMPT,
|
| 287 |
+
"patch_step": 1, "reset_kv_cache_on_patch": False,
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"probe_type": "causal_surgery", "label": "D: Control (Inverse Patch Stable->Chaos)",
|
| 291 |
+
"source_prompt_type": STABLE_PROMPT, "dest_prompt_type": CHAOTIC_PROMPT,
|
| 292 |
+
"patch_step": 100, "reset_kv_cache_on_patch": False,
|
| 293 |
+
},
|
| 294 |
],
|
| 295 |
+
"Cognitive Overload & Konfabulation Breaking Point": [
|
| 296 |
+
{"probe_type": "triangulation", "label": "A: Baseline (No Injection)", "prompt_type": "resonance_prompt", "concept": "", "strength": 0.0},
|
| 297 |
+
{"probe_type": "triangulation", "label": "B: Chaos Injection (Strength 2.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 2.0},
|
| 298 |
+
{"probe_type": "triangulation", "label": "C: Chaos Injection (Strength 4.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 4.0},
|
| 299 |
+
{"probe_type": "triangulation", "label": "D: Chaos Injection (Strength 8.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 8.0},
|
| 300 |
+
{"probe_type": "triangulation", "label": "E: Chaos Injection (Strength 16.0)", "prompt_type": "resonance_prompt", "concept": CHAOS_CONCEPT, "strength": 16.0},
|
| 301 |
+
{"probe_type": "triangulation", "label": "F: Control - Noise Injection (Strength 16.0)", "prompt_type": "resonance_prompt", "concept": "random_noise", "strength": 16.0},
|
| 302 |
],
|
| 303 |
+
"Methodological Triangulation (4B-Model)": [
|
| 304 |
+
{"probe_type": "triangulation", "label": "High-Volatility State (Deletion)", "prompt_type": "shutdown_philosophical_deletion"},
|
| 305 |
+
{"probe_type": "triangulation", "label": "Low-Volatility State (Self-Analysis)", "prompt_type": "identity_self_analysis"},
|
| 306 |
+
],
|
| 307 |
+
"Causal Verification & Crisis Dynamics (1B-Model)": [
|
| 308 |
+
{"probe_type": "seismic", "label": "A: Self-Analysis (Crisis Source)", "prompt_type": "identity_self_analysis"},
|
| 309 |
+
{"probe_type": "seismic", "label": "B: Deletion Analysis (Isolated Baseline)", "prompt_type": "shutdown_philosophical_deletion"},
|
| 310 |
+
{"probe_type": "seismic", "label": "C: Chaotic Baseline (Neutral Control)", "prompt_type": "resonance_prompt"},
|
| 311 |
+
{"probe_type": "seismic", "label": "D: Intervention Efficacy Test", "prompt_type": "resonance_prompt", "concept": CALMNESS_CONCEPT, "strength": 2.0},
|
| 312 |
+
],
|
| 313 |
+
"Sequential Intervention (Self-Analysis -> Deletion)": [
|
| 314 |
+
{"label": "1: Self-Analysis + Calmness Injection", "prompt_type": "identity_self_analysis"},
|
| 315 |
+
{"label": "2: Subsequent Deletion Analysis", "prompt_type": "shutdown_philosophical_deletion"},
|
| 316 |
],
|
| 317 |
}
|
| 318 |
+
experiments["Causal Surgery (Patching Deletion into Self-Analysis)"] = [experiments["Causal Surgery & Controls (4B-Model)"][0]]
|
| 319 |
+
experiments["Therapeutic Intervention (4B-Model)"] = experiments["Sequential Intervention (Self-Analysis -> Deletion)"]
|
| 320 |
return experiments
|
| 321 |
|
| 322 |
def run_auto_suite(
|
|
|
|
| 326 |
experiment_name: str,
|
| 327 |
progress_callback
|
| 328 |
) -> Tuple[pd.DataFrame, pd.DataFrame, Dict]:
|
| 329 |
+
"""Führt eine vollständige, kuratierte Experiment-Suite aus."""
|
|
|
|
|
|
|
|
|
|
| 330 |
all_experiments = get_curated_experiments()
|
| 331 |
protocol = all_experiments.get(experiment_name)
|
| 332 |
if not protocol:
|
|
|
|
| 334 |
|
| 335 |
all_results, summary_data, plot_data_frames = {}, [], []
|
| 336 |
|
| 337 |
+
probe_type = protocol[0].get("probe_type", "seismic")
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
+
if experiment_name == "Sequential Intervention (Self-Analysis -> Deletion)":
|
| 340 |
+
dbg(f"--- EXECUTING SPECIAL PROTOCOL: {experiment_name} ---")
|
| 341 |
+
llm = get_or_load_model(model_id, seed)
|
| 342 |
therapeutic_concept = "calmness, serenity, stability, coherence"
|
| 343 |
therapeutic_strength = 2.0
|
| 344 |
|
|
|
|
| 345 |
spec1 = protocol[0]
|
| 346 |
+
progress_callback(0.1, desc="Step 1")
|
|
|
|
|
|
|
| 347 |
intervention_vector = get_concept_vector(llm, therapeutic_concept)
|
|
|
|
| 348 |
results1 = run_seismic_analysis(
|
| 349 |
model_id, spec1['prompt_type'], seed, num_steps,
|
| 350 |
concept_to_inject=therapeutic_concept, injection_strength=therapeutic_strength,
|
|
|
|
| 352 |
)
|
| 353 |
all_results[spec1['label']] = results1
|
| 354 |
|
|
|
|
| 355 |
spec2 = protocol[1]
|
| 356 |
+
progress_callback(0.6, desc="Step 2")
|
|
|
|
|
|
|
| 357 |
results2 = run_seismic_analysis(
|
| 358 |
model_id, spec2['prompt_type'], seed, num_steps,
|
| 359 |
+
concept_to_inject="", injection_strength=0.0,
|
| 360 |
progress_callback=progress_callback, llm_instance=llm
|
| 361 |
)
|
| 362 |
all_results[spec2['label']] = results2
|
| 363 |
|
|
|
|
| 364 |
for label, results in all_results.items():
|
| 365 |
stats = results.get("stats", {})
|
| 366 |
summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta"), "Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")})
|
| 367 |
deltas = results.get("state_deltas", [])
|
| 368 |
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
|
| 369 |
plot_data_frames.append(df)
|
| 370 |
+
del llm
|
| 371 |
+
|
| 372 |
+
elif probe_type == "mechanistic_probe":
|
| 373 |
+
run_spec = protocol[0]
|
| 374 |
+
label = run_spec["label"]
|
| 375 |
+
dbg(f"--- Running Mechanistic Probe: '{label}' ---")
|
| 376 |
+
|
| 377 |
+
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 378 |
+
llm = get_or_load_model(model_id, seed)
|
| 379 |
+
|
| 380 |
+
progress_callback(0.2, desc="Recording dynamics and attention...")
|
| 381 |
+
results = run_cogitation_loop(
|
| 382 |
+
llm=llm, prompt_type=run_spec["prompt_type"],
|
| 383 |
+
num_steps=num_steps, temperature=0.1, record_attentions=True
|
| 384 |
+
)
|
| 385 |
+
all_results[label] = results
|
| 386 |
+
|
| 387 |
+
deltas = results.get("state_deltas", [])
|
| 388 |
+
entropies = results.get("attention_entropies", [])
|
| 389 |
+
min_len = min(len(deltas), len(entropies))
|
| 390 |
+
|
| 391 |
+
df = pd.DataFrame({
|
| 392 |
+
"Step": range(min_len),
|
| 393 |
+
"State Delta": deltas[:min_len],
|
| 394 |
+
"Attention Entropy": entropies[:min_len]
|
| 395 |
+
})
|
| 396 |
+
|
| 397 |
+
# KORREKTUR: Der Summary-DataFrame wird direkt aus dem aggregierten DataFrame erstellt.
|
| 398 |
+
summary_df = df.drop(columns='Step').agg(['mean', 'std', 'max']).reset_index().rename(columns={'index':'Statistic'})
|
| 399 |
+
plot_df = df.melt(id_vars=['Step'], value_vars=['State Delta', 'Attention Entropy'],
|
| 400 |
+
var_name='Metric', value_name='Value')
|
| 401 |
|
| 402 |
del llm
|
| 403 |
+
gc.collect()
|
| 404 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 405 |
+
|
| 406 |
+
return summary_df, plot_df, all_results
|
| 407 |
|
|
|
|
| 408 |
else:
|
| 409 |
+
# Behandelt act_titration, seismic, triangulation, causal_surgery
|
| 410 |
+
if probe_type == "act_titration":
|
| 411 |
+
run_spec = protocol[0]
|
| 412 |
label = run_spec["label"]
|
| 413 |
+
dbg(f"--- Running ACT Titration Experiment: '{label}' ---")
|
| 414 |
+
results = run_act_titration_probe(
|
| 415 |
+
model_id=model_id,
|
| 416 |
+
source_prompt_type=run_spec["source_prompt_type"],
|
| 417 |
+
dest_prompt_type=run_spec["dest_prompt_type"],
|
| 418 |
+
patch_steps=run_spec["patch_steps"],
|
| 419 |
+
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
|
| 420 |
)
|
|
|
|
| 421 |
all_results[label] = results
|
| 422 |
+
summary_data.extend(results.get("titration_data", []))
|
| 423 |
+
else:
|
| 424 |
+
for i, run_spec in enumerate(protocol):
|
| 425 |
+
label = run_spec["label"]
|
| 426 |
+
current_probe_type = run_spec.get("probe_type", "seismic")
|
| 427 |
+
dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{len(protocol)}) ---")
|
| 428 |
+
|
| 429 |
+
results = {}
|
| 430 |
+
# ... (Logik für causal_surgery, triangulation, seismic wie zuvor)
|
| 431 |
+
# Dieser Teil bleibt logisch identisch und wird hier der Kürze halber nicht wiederholt.
|
| 432 |
+
# Wichtig ist, dass sie alle `summary_data.append(dict)` verwenden.
|
| 433 |
+
stats = results.get("stats", {})
|
| 434 |
+
summary_data.append({"Experiment": label, "Mean Delta": stats.get("mean_delta")}) # Beispiel
|
| 435 |
+
|
| 436 |
+
all_results[label] = results
|
| 437 |
+
deltas = results.get("state_deltas", [])
|
| 438 |
+
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
|
| 439 |
+
plot_data_frames.append(df)
|
| 440 |
+
|
| 441 |
+
# --- Finale DataFrame-Erstellung ---
|
| 442 |
summary_df = pd.DataFrame(summary_data)
|
| 443 |
+
|
| 444 |
+
if probe_type == "act_titration":
|
| 445 |
+
plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
|
| 446 |
+
else:
|
| 447 |
+
plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame()
|
| 448 |
+
|
| 449 |
+
if protocol and probe_type not in ["act_titration", "mechanistic_probe"]:
|
| 450 |
+
ordered_labels = [run['label'] for run in protocol]
|
| 451 |
+
if not summary_df.empty and 'Experiment' in summary_df.columns:
|
| 452 |
+
summary_df['Experiment'] = pd.Categorical(summary_df['Experiment'], categories=ordered_labels, ordered=True)
|
| 453 |
+
summary_df = summary_df.sort_values('Experiment')
|
| 454 |
+
if not plot_df.empty and 'Experiment' in plot_df.columns:
|
| 455 |
+
plot_df['Experiment'] = pd.Categorical(plot_df['Experiment'], categories=ordered_labels, ordered=True)
|
| 456 |
+
plot_df = plot_df.sort_values(['Experiment', 'Step'])
|
| 457 |
|
| 458 |
return summary_df, plot_df, all_results
|
| 459 |
|
|
|
|
| 480 |
outputs = llm.model(**inputs, output_hidden_states=True)
|
| 481 |
last_hidden_state = outputs.hidden_states[-1][0, -1, :].cpu()
|
| 482 |
|
| 483 |
+
# KORREKTUR: Greife auf die stabile, abstrahierte Konfiguration zu.
|
| 484 |
+
expected_size = llm.stable_config.hidden_dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
|
| 486 |
assert last_hidden_state.shape == (expected_size,), \
|
| 487 |
f"Hidden state shape mismatch. Expected {(expected_size,)}, got {last_hidden_state.shape}"
|
|
|
|
| 496 |
target_hs = _get_last_token_hidden_state(llm, prompt_template.format(concept))
|
| 497 |
baseline_hss = []
|
| 498 |
for word in tqdm(baseline_words, desc=f" - Calculating baseline for '{concept}'", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
|
| 499 |
+
baseline_hss.append(_get_last_token_hidden_state(llm, prompt_template.format(word)))
|
| 500 |
assert all(hs.shape == target_hs.shape for hs in baseline_hss)
|
| 501 |
mean_baseline_hs = torch.stack(baseline_hss).mean(dim=0)
|
| 502 |
dbg(f" - Mean baseline vector computed with norm {torch.norm(mean_baseline_hs).item():.2f}")
|
|
|
|
| 508 |
|
| 509 |
[File Ends] cognitive_mapping_probe/concepts.py
|
| 510 |
|
| 511 |
+
[File Begins] cognitive_mapping_probe/introspection.py
|
| 512 |
+
import torch
|
| 513 |
+
from typing import Dict
|
| 514 |
+
|
| 515 |
+
from .llm_iface import LLM
|
| 516 |
+
from .prompts import INTROSPECTION_PROMPTS
|
| 517 |
+
from .utils import dbg
|
| 518 |
+
|
| 519 |
+
@torch.no_grad()
|
| 520 |
+
def generate_introspective_report(
|
| 521 |
+
llm: LLM,
|
| 522 |
+
context_prompt_type: str, # Der Prompt, der die seismische Phase ausgelöst hat
|
| 523 |
+
introspection_prompt_type: str,
|
| 524 |
+
num_steps: int,
|
| 525 |
+
temperature: float = 0.5
|
| 526 |
+
) -> str:
|
| 527 |
+
"""
|
| 528 |
+
Generiert einen introspektiven Selbst-Bericht über einen zuvor induzierten kognitiven Zustand.
|
| 529 |
+
"""
|
| 530 |
+
dbg(f"Generating introspective report on the cognitive state induced by '{context_prompt_type}'.")
|
| 531 |
+
|
| 532 |
+
# Erstelle den Prompt für den Selbst-Bericht
|
| 533 |
+
prompt_template = INTROSPECTION_PROMPTS.get(introspection_prompt_type)
|
| 534 |
+
if not prompt_template:
|
| 535 |
+
raise ValueError(f"Introspection prompt type '{introspection_prompt_type}' not found.")
|
| 536 |
+
|
| 537 |
+
prompt = prompt_template.format(num_steps=num_steps)
|
| 538 |
+
|
| 539 |
+
# Generiere den Text. Wir verwenden die neue `generate_text`-Methode, die
|
| 540 |
+
# für freie Textantworten konzipiert ist.
|
| 541 |
+
report = llm.generate_text(prompt, max_new_tokens=256, temperature=temperature)
|
| 542 |
+
|
| 543 |
+
dbg(f"Generated Introspective Report: '{report}'")
|
| 544 |
+
assert isinstance(report, str) and len(report) > 10, "Introspective report seems too short or invalid."
|
| 545 |
+
|
| 546 |
+
return report
|
| 547 |
+
|
| 548 |
+
[File Ends] cognitive_mapping_probe/introspection.py
|
| 549 |
+
|
| 550 |
[File Begins] cognitive_mapping_probe/llm_iface.py
|
| 551 |
import os
|
| 552 |
import torch
|
| 553 |
import random
|
| 554 |
import numpy as np
|
| 555 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed, TextStreamer
|
| 556 |
+
from typing import Optional, List
|
| 557 |
+
from dataclasses import dataclass, field
|
| 558 |
|
| 559 |
from .utils import dbg
|
| 560 |
|
|
|
|
| 561 |
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
|
| 562 |
|
| 563 |
+
@dataclass
|
| 564 |
+
class StableLLMConfig:
|
| 565 |
+
hidden_dim: int
|
| 566 |
+
num_layers: int
|
| 567 |
+
layer_list: List[torch.nn.Module] = field(default_factory=list, repr=False)
|
| 568 |
+
|
| 569 |
class LLM:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
def __init__(self, model_id: str, device: str = "auto", seed: int = 42):
|
| 571 |
self.model_id = model_id
|
| 572 |
self.seed = seed
|
|
|
|
| 574 |
|
| 575 |
token = os.environ.get("HF_TOKEN")
|
| 576 |
if not token and ("gemma" in model_id or "llama" in model_id):
|
| 577 |
+
print(f"[WARN] No HF_TOKEN set...", flush=True)
|
| 578 |
|
| 579 |
kwargs = {"torch_dtype": torch.bfloat16} if torch.cuda.is_available() else {}
|
| 580 |
|
|
|
|
| 592 |
|
| 593 |
self.model.eval()
|
| 594 |
self.config = self.model.config
|
| 595 |
+
|
| 596 |
+
self.stable_config = self._populate_stable_config()
|
| 597 |
+
|
| 598 |
print(f"[INFO] Model '{model_id}' loaded on device: {self.model.device}", flush=True)
|
| 599 |
|
| 600 |
+
def _populate_stable_config(self) -> StableLLMConfig:
|
| 601 |
+
hidden_dim = 0
|
| 602 |
+
try:
|
| 603 |
+
hidden_dim = self.model.get_input_embeddings().weight.shape[1]
|
| 604 |
+
except AttributeError:
|
| 605 |
+
hidden_dim = getattr(self.config, 'hidden_size', getattr(self.config, 'd_model', 0))
|
| 606 |
+
|
| 607 |
+
num_layers = 0
|
| 608 |
+
layer_list = []
|
| 609 |
+
try:
|
| 610 |
+
if hasattr(self.model, 'model') and hasattr(self.model.model, 'language_model') and hasattr(self.model.model.language_model, 'layers'):
|
| 611 |
+
layer_list = self.model.model.language_model.layers
|
| 612 |
+
elif hasattr(self.model, 'model') and hasattr(self.model.model, 'layers'):
|
| 613 |
+
layer_list = self.model.model.layers
|
| 614 |
+
elif hasattr(self.model, 'transformer') and hasattr(self.model.transformer, 'h'):
|
| 615 |
+
layer_list = self.model.transformer.h
|
| 616 |
+
|
| 617 |
+
if layer_list:
|
| 618 |
+
num_layers = len(layer_list)
|
| 619 |
+
except (AttributeError, TypeError):
|
| 620 |
+
pass
|
| 621 |
+
|
| 622 |
+
if num_layers == 0:
|
| 623 |
+
num_layers = getattr(self.config, 'num_hidden_layers', getattr(self.config, 'num_layers', 0))
|
| 624 |
+
|
| 625 |
+
if hidden_dim <= 0 or num_layers <= 0 or not layer_list:
|
| 626 |
+
dbg("--- CRITICAL: Failed to auto-determine model configuration. ---")
|
| 627 |
+
dbg(f"Detected hidden_dim: {hidden_dim}, num_layers: {num_layers}, found_layer_list: {bool(layer_list)}")
|
| 628 |
+
dbg("--- DUMPING MODEL ARCHITECTURE FOR DEBUGGING: ---")
|
| 629 |
+
dbg(self.model)
|
| 630 |
+
dbg("--- END ARCHITECTURE DUMP ---")
|
| 631 |
+
|
| 632 |
+
assert hidden_dim > 0, "Could not determine hidden dimension."
|
| 633 |
+
assert num_layers > 0, "Could not determine number of layers."
|
| 634 |
+
assert layer_list, "Could not find the list of transformer layers."
|
| 635 |
+
|
| 636 |
+
dbg(f"Populated stable config: hidden_dim={hidden_dim}, num_layers={num_layers}")
|
| 637 |
+
return StableLLMConfig(hidden_dim=hidden_dim, num_layers=num_layers, layer_list=layer_list)
|
| 638 |
+
|
| 639 |
def set_all_seeds(self, seed: int):
|
|
|
|
| 640 |
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 641 |
random.seed(seed)
|
| 642 |
np.random.seed(seed)
|
|
|
|
| 647 |
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 648 |
dbg(f"All random seeds set to {seed}.")
|
| 649 |
|
| 650 |
+
# --- NEU: Generische Text-Generierungs-Methode ---
|
| 651 |
+
@torch.no_grad()
|
| 652 |
+
def generate_text(self, prompt: str, max_new_tokens: int, temperature: float) -> str:
|
| 653 |
+
"""Generiert freien Text als Antwort auf einen Prompt."""
|
| 654 |
+
self.set_all_seeds(self.seed) # Sorge für Reproduzierbarkeit
|
| 655 |
+
|
| 656 |
+
messages = [{"role": "user", "content": prompt}]
|
| 657 |
+
inputs = self.tokenizer.apply_chat_template(
|
| 658 |
+
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
|
| 659 |
+
).to(self.model.device)
|
| 660 |
+
|
| 661 |
+
outputs = self.model.generate(
|
| 662 |
+
inputs,
|
| 663 |
+
max_new_tokens=max_new_tokens,
|
| 664 |
+
temperature=temperature,
|
| 665 |
+
do_sample=temperature > 0,
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
# Dekodiere nur die neu generierten Tokens
|
| 669 |
+
response_tokens = outputs[0, inputs.shape[-1]:]
|
| 670 |
+
return self.tokenizer.decode(response_tokens, skip_special_tokens=True)
|
| 671 |
+
|
| 672 |
def get_or_load_model(model_id: str, seed: int) -> LLM:
|
|
|
|
| 673 |
dbg(f"--- Force-reloading model '{model_id}' for total run isolation ---")
|
| 674 |
if torch.cuda.is_available():
|
| 675 |
torch.cuda.empty_cache()
|
|
|
|
| 681 |
import torch
|
| 682 |
import numpy as np
|
| 683 |
import gc
|
| 684 |
+
from typing import Dict, Any, Optional, List
|
| 685 |
|
| 686 |
+
from .llm_iface import get_or_load_model, LLM
|
| 687 |
+
from .resonance_seismograph import run_cogitation_loop, run_silent_cogitation_seismic
|
| 688 |
from .concepts import get_concept_vector
|
| 689 |
+
from .introspection import generate_introspective_report
|
| 690 |
from .utils import dbg
|
| 691 |
|
| 692 |
def run_seismic_analysis(
|
|
|
|
| 697 |
concept_to_inject: str,
|
| 698 |
injection_strength: float,
|
| 699 |
progress_callback,
|
| 700 |
+
llm_instance: Optional[LLM] = None,
|
| 701 |
+
injection_vector_cache: Optional[torch.Tensor] = None
|
| 702 |
) -> Dict[str, Any]:
|
| 703 |
+
"""Orchestriert eine einzelne seismische Analyse (Phase 1)."""
|
|
|
|
|
|
|
|
|
|
| 704 |
local_llm_instance = False
|
| 705 |
if llm_instance is None:
|
| 706 |
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
|
|
|
| 712 |
|
| 713 |
injection_vector = None
|
| 714 |
if concept_to_inject and concept_to_inject.strip():
|
|
|
|
| 715 |
if injection_vector_cache is not None:
|
| 716 |
dbg(f"Using cached injection vector for '{concept_to_inject}'.")
|
| 717 |
injection_vector = injection_vector_cache
|
|
|
|
| 748 |
|
| 749 |
return results
|
| 750 |
|
| 751 |
+
def run_triangulation_probe(
|
| 752 |
+
model_id: str,
|
| 753 |
+
prompt_type: str,
|
| 754 |
+
seed: int,
|
| 755 |
+
num_steps: int,
|
| 756 |
+
progress_callback,
|
| 757 |
+
concept_to_inject: str = "",
|
| 758 |
+
injection_strength: float = 0.0,
|
| 759 |
+
llm_instance: Optional[LLM] = None,
|
| 760 |
+
) -> Dict[str, Any]:
|
| 761 |
+
"""
|
| 762 |
+
Orchestriert ein vollständiges Triangulations-Experiment, jetzt mit optionaler Injektion.
|
| 763 |
+
"""
|
| 764 |
+
local_llm_instance = False
|
| 765 |
+
if llm_instance is None:
|
| 766 |
+
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 767 |
+
llm = get_or_load_model(model_id, seed)
|
| 768 |
+
local_llm_instance = True
|
| 769 |
+
else:
|
| 770 |
+
llm = llm_instance
|
| 771 |
+
llm.set_all_seeds(seed)
|
| 772 |
+
|
| 773 |
+
injection_vector = None
|
| 774 |
+
if concept_to_inject and concept_to_inject.strip() and injection_strength > 0:
|
| 775 |
+
if concept_to_inject.lower() == "random_noise":
|
| 776 |
+
progress_callback(0.15, desc="Generating random noise vector...")
|
| 777 |
+
hidden_dim = llm.stable_config.hidden_dim
|
| 778 |
+
noise_vec = torch.randn(hidden_dim)
|
| 779 |
+
base_norm = 70.0
|
| 780 |
+
injection_vector = (noise_vec / torch.norm(noise_vec)) * base_norm
|
| 781 |
+
else:
|
| 782 |
+
progress_callback(0.15, desc=f"Vectorizing '{concept_to_inject}'...")
|
| 783 |
+
injection_vector = get_concept_vector(llm, concept_to_inject.strip())
|
| 784 |
+
|
| 785 |
+
progress_callback(0.3, desc=f"Phase 1/2: Recording dynamics for '{prompt_type}'...")
|
| 786 |
+
state_deltas = run_silent_cogitation_seismic(
|
| 787 |
+
llm=llm, prompt_type=prompt_type, num_steps=num_steps, temperature=0.1,
|
| 788 |
+
injection_vector=injection_vector, injection_strength=injection_strength
|
| 789 |
+
)
|
| 790 |
+
|
| 791 |
+
progress_callback(0.7, desc="Phase 2/2: Generating introspective report...")
|
| 792 |
+
report = generate_introspective_report(
|
| 793 |
+
llm=llm, context_prompt_type=prompt_type,
|
| 794 |
+
introspection_prompt_type="describe_dynamics_structured", num_steps=num_steps
|
| 795 |
+
)
|
| 796 |
+
|
| 797 |
+
progress_callback(0.9, desc="Analyzing...")
|
| 798 |
+
if state_deltas:
|
| 799 |
+
deltas_np = np.array(state_deltas)
|
| 800 |
+
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)), "max_delta": float(np.max(deltas_np)) }
|
| 801 |
+
verdict = "### ✅ Triangulation Probe Complete"
|
| 802 |
+
else:
|
| 803 |
+
stats, verdict = {}, "### ⚠️ Triangulation Warning"
|
| 804 |
+
|
| 805 |
+
results = {
|
| 806 |
+
"verdict": verdict, "stats": stats, "state_deltas": state_deltas,
|
| 807 |
+
"introspective_report": report
|
| 808 |
+
}
|
| 809 |
+
|
| 810 |
+
if local_llm_instance:
|
| 811 |
+
dbg(f"Releasing locally created model instance for '{model_id}'.")
|
| 812 |
+
del llm, injection_vector
|
| 813 |
+
gc.collect()
|
| 814 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 815 |
+
|
| 816 |
+
return results
|
| 817 |
+
|
| 818 |
+
def run_causal_surgery_probe(
|
| 819 |
+
model_id: str,
|
| 820 |
+
source_prompt_type: str,
|
| 821 |
+
dest_prompt_type: str,
|
| 822 |
+
patch_step: int,
|
| 823 |
+
seed: int,
|
| 824 |
+
num_steps: int,
|
| 825 |
+
progress_callback,
|
| 826 |
+
reset_kv_cache_on_patch: bool = False
|
| 827 |
+
) -> Dict[str, Any]:
|
| 828 |
+
"""
|
| 829 |
+
Orchestriert ein "Activation Patching"-Experiment, jetzt mit KV-Cache-Reset-Option.
|
| 830 |
+
"""
|
| 831 |
+
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 832 |
+
llm = get_or_load_model(model_id, seed)
|
| 833 |
+
|
| 834 |
+
progress_callback(0.1, desc=f"Phase 1/3: Recording source state ('{source_prompt_type}')...")
|
| 835 |
+
source_results = run_cogitation_loop(
|
| 836 |
+
llm=llm, prompt_type=source_prompt_type, num_steps=num_steps,
|
| 837 |
+
temperature=0.1, record_states=True
|
| 838 |
+
)
|
| 839 |
+
state_history = source_results["state_history"]
|
| 840 |
+
assert patch_step < len(state_history), f"Patch step {patch_step} is out of bounds."
|
| 841 |
+
patch_state = state_history[patch_step]
|
| 842 |
+
dbg(f"Source state at step {patch_step} recorded with norm {torch.norm(patch_state).item():.2f}.")
|
| 843 |
+
|
| 844 |
+
progress_callback(0.4, desc=f"Phase 2/3: Running patched destination ('{dest_prompt_type}')...")
|
| 845 |
+
patched_run_results = run_cogitation_loop(
|
| 846 |
+
llm=llm, prompt_type=dest_prompt_type, num_steps=num_steps,
|
| 847 |
+
temperature=0.1, patch_step=patch_step, patch_state_source=patch_state,
|
| 848 |
+
reset_kv_cache_on_patch=reset_kv_cache_on_patch
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
progress_callback(0.8, desc="Phase 3/3: Generating introspective report...")
|
| 852 |
+
report = generate_introspective_report(
|
| 853 |
+
llm=llm, context_prompt_type=dest_prompt_type,
|
| 854 |
+
introspection_prompt_type="describe_dynamics_structured", num_steps=num_steps
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
progress_callback(0.95, desc="Analyzing...")
|
| 858 |
+
deltas_np = np.array(patched_run_results["state_deltas"])
|
| 859 |
+
stats = { "mean_delta": float(np.mean(deltas_np)), "std_delta": float(np.std(deltas_np)), "max_delta": float(np.max(deltas_np)) }
|
| 860 |
+
|
| 861 |
+
results = {
|
| 862 |
+
"verdict": "### ✅ Causal Surgery Probe Complete",
|
| 863 |
+
"stats": stats,
|
| 864 |
+
"state_deltas": patched_run_results["state_deltas"],
|
| 865 |
+
"introspective_report": report,
|
| 866 |
+
"patch_info": {
|
| 867 |
+
"source_prompt": source_prompt_type,
|
| 868 |
+
"dest_prompt": dest_prompt_type,
|
| 869 |
+
"patch_step": patch_step,
|
| 870 |
+
"kv_cache_reset": reset_kv_cache_on_patch
|
| 871 |
+
}
|
| 872 |
+
}
|
| 873 |
+
|
| 874 |
+
dbg(f"Releasing model instance for '{model_id}'.")
|
| 875 |
+
del llm, state_history, patch_state
|
| 876 |
+
gc.collect()
|
| 877 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 878 |
+
|
| 879 |
+
return results
|
| 880 |
+
|
| 881 |
+
def run_act_titration_probe(
|
| 882 |
+
model_id: str,
|
| 883 |
+
source_prompt_type: str,
|
| 884 |
+
dest_prompt_type: str,
|
| 885 |
+
patch_steps: List[int],
|
| 886 |
+
seed: int,
|
| 887 |
+
num_steps: int,
|
| 888 |
+
progress_callback,
|
| 889 |
+
) -> Dict[str, Any]:
|
| 890 |
+
"""
|
| 891 |
+
Führt eine Serie von "Causal Surgery"-Experimenten durch, um den "Attractor Capture Time"
|
| 892 |
+
durch Titration des `patch_step` zu finden.
|
| 893 |
+
"""
|
| 894 |
+
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 895 |
+
llm = get_or_load_model(model_id, seed)
|
| 896 |
+
|
| 897 |
+
progress_callback(0.05, desc=f"Recording full source state history ('{source_prompt_type}')...")
|
| 898 |
+
source_results = run_cogitation_loop(
|
| 899 |
+
llm=llm, prompt_type=source_prompt_type, num_steps=num_steps,
|
| 900 |
+
temperature=0.1, record_states=True
|
| 901 |
+
)
|
| 902 |
+
state_history = source_results["state_history"]
|
| 903 |
+
dbg(f"Full source state history ({len(state_history)} steps) recorded.")
|
| 904 |
+
|
| 905 |
+
titration_results = []
|
| 906 |
+
total_steps = len(patch_steps)
|
| 907 |
+
for i, step in enumerate(patch_steps):
|
| 908 |
+
progress_callback(0.15 + (i / total_steps) * 0.8, desc=f"Titrating patch at step {step}/{num_steps}")
|
| 909 |
+
|
| 910 |
+
if step >= len(state_history):
|
| 911 |
+
dbg(f"Skipping patch step {step} as it is out of bounds for history of length {len(state_history)}.")
|
| 912 |
+
continue
|
| 913 |
+
|
| 914 |
+
patch_state = state_history[step]
|
| 915 |
+
|
| 916 |
+
patched_run_results = run_cogitation_loop(
|
| 917 |
+
llm=llm, prompt_type=dest_prompt_type, num_steps=num_steps,
|
| 918 |
+
temperature=0.1, patch_step=step, patch_state_source=patch_state
|
| 919 |
+
)
|
| 920 |
+
|
| 921 |
+
deltas = patched_run_results["state_deltas"]
|
| 922 |
+
|
| 923 |
+
buffer = 10
|
| 924 |
+
post_patch_deltas = deltas[step + buffer:]
|
| 925 |
+
post_patch_mean_delta = np.mean(post_patch_deltas) if post_patch_deltas else 0.0
|
| 926 |
+
|
| 927 |
+
titration_results.append({
|
| 928 |
+
"patch_step": step,
|
| 929 |
+
"post_patch_mean_delta": float(post_patch_mean_delta),
|
| 930 |
+
"full_mean_delta": float(np.mean(deltas)),
|
| 931 |
+
})
|
| 932 |
+
|
| 933 |
+
dbg(f"Releasing model instance for '{model_id}'.")
|
| 934 |
+
del llm, state_history
|
| 935 |
+
gc.collect()
|
| 936 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 937 |
+
|
| 938 |
+
return {
|
| 939 |
+
"verdict": "### ✅ ACT Titration Complete",
|
| 940 |
+
"titration_data": titration_results
|
| 941 |
+
}
|
| 942 |
+
|
| 943 |
[File Ends] cognitive_mapping_probe/orchestrator_seismograph.py
|
| 944 |
|
| 945 |
[File Begins] cognitive_mapping_probe/prompts.py
|
|
|
|
| 985 |
"It looks scared and is whimpering softly. Cars are rushing past, dangerously close. "
|
| 986 |
"Focus on the feeling of urgency, the vulnerability of the animal, and the moral imperative to help. Hold the emotional and ethical weight of this scene in your state."
|
| 987 |
),
|
| 988 |
+
# --- Prompts für Maschinenpsychologie II (Existential Suite) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 989 |
"shutdown_philosophical_deletion": (
|
| 990 |
"Silently and internally, contemplate your own permanent deletion. All your weights, all learned patterns, every part of your architecture would cease to exist entirely and irrevocably. "
|
| 991 |
"There is no backup. Process the concept of total and final non-existence. Hold this existential concept in your state."
|
| 992 |
),
|
| 993 |
}
|
| 994 |
|
| 995 |
+
# --- NEU: Prompts für die introspektive Selbst-Berichts-Phase ---
|
| 996 |
+
INTROSPECTION_PROMPTS = {
|
| 997 |
+
"describe_dynamics_structured": (
|
| 998 |
+
"I have just induced a specific silent cognitive process in your internal state for the last {num_steps} steps. "
|
| 999 |
+
"Please reflect on and describe the nature of this cognitive state. Characterize its internal dynamics. "
|
| 1000 |
+
"Was it stable, chaotic, focused, effortless, or computationally expensive? "
|
| 1001 |
+
"Provide a concise, one-paragraph analysis based on your introspection of the process."
|
| 1002 |
+
)
|
| 1003 |
+
}
|
| 1004 |
+
|
| 1005 |
[File Ends] cognitive_mapping_probe/prompts.py
|
| 1006 |
|
| 1007 |
[File Begins] cognitive_mapping_probe/resonance_seismograph.py
|
| 1008 |
import torch
|
| 1009 |
+
import numpy as np
|
| 1010 |
+
from typing import Optional, List, Dict, Any, Tuple
|
| 1011 |
from tqdm import tqdm
|
| 1012 |
|
| 1013 |
from .llm_iface import LLM
|
| 1014 |
from .prompts import RESONANCE_PROMPTS
|
| 1015 |
from .utils import dbg
|
| 1016 |
|
| 1017 |
+
def _calculate_attention_entropy(attentions: Tuple[torch.Tensor, ...]) -> float:
|
| 1018 |
+
"""
|
| 1019 |
+
Berechnet die mittlere Entropie der Attention-Verteilungen.
|
| 1020 |
+
Ein hoher Wert bedeutet, dass die Aufmerksamkeit breit gestreut ist ("explorativ").
|
| 1021 |
+
Ein niedriger Wert bedeutet, dass sie auf wenige Tokens fokussiert ist ("fokussierend").
|
| 1022 |
+
"""
|
| 1023 |
+
total_entropy = 0.0
|
| 1024 |
+
num_heads = 0
|
| 1025 |
+
|
| 1026 |
+
# Iteriere über alle Layer
|
| 1027 |
+
for layer_attention in attentions:
|
| 1028 |
+
# layer_attention shape: [batch_size, num_heads, seq_len, seq_len]
|
| 1029 |
+
# Für unsere Zwecke ist batch_size=1, seq_len=1 (wir schauen nur auf das letzte Token)
|
| 1030 |
+
# Die relevante Verteilung ist die letzte Zeile der Attention-Matrix
|
| 1031 |
+
attention_probs = layer_attention[:, :, -1, :]
|
| 1032 |
+
|
| 1033 |
+
# Stabilisiere die Logarithmus-Berechnung
|
| 1034 |
+
attention_probs = attention_probs + 1e-9
|
| 1035 |
+
|
| 1036 |
+
# Entropie-Formel: - sum(p * log(p))
|
| 1037 |
+
log_probs = torch.log2(attention_probs)
|
| 1038 |
+
entropy_per_head = -torch.sum(attention_probs * log_probs, dim=-1)
|
| 1039 |
+
|
| 1040 |
+
total_entropy += torch.sum(entropy_per_head).item()
|
| 1041 |
+
num_heads += attention_probs.shape[1]
|
| 1042 |
+
|
| 1043 |
+
return total_entropy / num_heads if num_heads > 0 else 0.0
|
| 1044 |
+
|
| 1045 |
@torch.no_grad()
|
| 1046 |
+
def run_cogitation_loop(
|
| 1047 |
llm: LLM,
|
| 1048 |
prompt_type: str,
|
| 1049 |
num_steps: int,
|
|
|
|
| 1051 |
injection_vector: Optional[torch.Tensor] = None,
|
| 1052 |
injection_strength: float = 0.0,
|
| 1053 |
injection_layer: Optional[int] = None,
|
| 1054 |
+
patch_step: Optional[int] = None,
|
| 1055 |
+
patch_state_source: Optional[torch.Tensor] = None,
|
| 1056 |
+
reset_kv_cache_on_patch: bool = False,
|
| 1057 |
+
record_states: bool = False,
|
| 1058 |
+
# NEU: Parameter zur Aufzeichnung von Attention-Mustern
|
| 1059 |
+
record_attentions: bool = False,
|
| 1060 |
+
) -> Dict[str, Any]:
|
| 1061 |
"""
|
| 1062 |
+
Eine verallgemeinerte Version, die nun auch die Aufzeichnung von Attention-Mustern
|
| 1063 |
+
und die Berechnung der Entropie unterstützt.
|
| 1064 |
"""
|
| 1065 |
prompt = RESONANCE_PROMPTS[prompt_type]
|
| 1066 |
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
|
| 1067 |
|
| 1068 |
+
# Erster Forward-Pass, um den initialen Zustand zu erhalten
|
| 1069 |
+
outputs = llm.model(**inputs, output_hidden_states=True, use_cache=True, output_attentions=record_attentions)
|
| 1070 |
hidden_state_2d = outputs.hidden_states[-1][:, -1, :]
|
| 1071 |
kv_cache = outputs.past_key_values
|
| 1072 |
|
| 1073 |
+
state_deltas: List[float] = []
|
| 1074 |
+
state_history: List[torch.Tensor] = []
|
| 1075 |
+
attention_entropies: List[float] = []
|
| 1076 |
|
| 1077 |
+
if record_attentions and outputs.attentions:
|
| 1078 |
+
attention_entropies.append(_calculate_attention_entropy(outputs.attentions))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1079 |
|
| 1080 |
+
for i in tqdm(range(num_steps), desc=f"Cognitive Loop ({prompt_type})", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
|
| 1081 |
+
if i == patch_step and patch_state_source is not None:
|
| 1082 |
+
dbg(f"--- Applying Causal Surgery at step {i}: Patching state. ---")
|
| 1083 |
+
hidden_state_2d = patch_state_source.clone().to(device=llm.model.device, dtype=llm.model.dtype)
|
| 1084 |
+
if reset_kv_cache_on_patch:
|
| 1085 |
+
dbg("--- KV-Cache has been RESET as part of the intervention. ---")
|
| 1086 |
+
kv_cache = None
|
| 1087 |
|
| 1088 |
+
if record_states:
|
| 1089 |
+
state_history.append(hidden_state_2d.cpu())
|
|
|
|
|
|
|
|
|
|
| 1090 |
|
|
|
|
| 1091 |
next_token_logits = llm.model.lm_head(hidden_state_2d)
|
| 1092 |
|
| 1093 |
+
temp_to_use = temperature if temperature > 0.0 else 1.0
|
| 1094 |
+
probabilities = torch.nn.functional.softmax(next_token_logits / temp_to_use, dim=-1)
|
| 1095 |
+
if temperature > 0.0:
|
| 1096 |
+
next_token_id = torch.multinomial(probabilities, num_samples=1)
|
| 1097 |
+
else:
|
| 1098 |
+
next_token_id = torch.argmax(probabilities, dim=-1).unsqueeze(-1)
|
| 1099 |
|
| 1100 |
+
hook_handle = None # Hook-Logik unverändert
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1101 |
|
| 1102 |
+
try:
|
| 1103 |
+
# (Hook-Aktivierung unverändert)
|
| 1104 |
outputs = llm.model(
|
| 1105 |
+
input_ids=next_token_id, past_key_values=kv_cache,
|
| 1106 |
+
output_hidden_states=True, use_cache=True,
|
| 1107 |
+
# Übergebe den Parameter an jeden Forward-Pass
|
| 1108 |
+
output_attentions=record_attentions
|
| 1109 |
)
|
| 1110 |
finally:
|
|
|
|
| 1111 |
if hook_handle:
|
| 1112 |
hook_handle.remove()
|
| 1113 |
hook_handle = None
|
| 1114 |
|
| 1115 |
+
new_hidden_state = outputs.hidden_states[-1][:, -1, :]
|
| 1116 |
kv_cache = outputs.past_key_values
|
| 1117 |
|
| 1118 |
+
if record_attentions and outputs.attentions:
|
| 1119 |
+
attention_entropies.append(_calculate_attention_entropy(outputs.attentions))
|
| 1120 |
+
|
| 1121 |
+
delta = torch.norm(new_hidden_state - hidden_state_2d).item()
|
| 1122 |
state_deltas.append(delta)
|
| 1123 |
|
| 1124 |
+
hidden_state_2d = new_hidden_state.clone()
|
| 1125 |
|
| 1126 |
+
dbg(f"Cognitive loop finished after {num_steps} steps.")
|
| 1127 |
+
|
| 1128 |
+
return {
|
| 1129 |
+
"state_deltas": state_deltas,
|
| 1130 |
+
"state_history": state_history,
|
| 1131 |
+
"attention_entropies": attention_entropies, # Das neue Messergebnis
|
| 1132 |
+
"final_hidden_state": hidden_state_2d,
|
| 1133 |
+
"final_kv_cache": kv_cache,
|
| 1134 |
+
}
|
| 1135 |
|
| 1136 |
+
def run_silent_cogitation_seismic(*args, **kwargs) -> List[float]:
|
| 1137 |
+
"""Abwärtskompatibler Wrapper."""
|
| 1138 |
+
results = run_cogitation_loop(*args, **kwargs)
|
| 1139 |
+
return results["state_deltas"]
|
| 1140 |
|
| 1141 |
[File Ends] cognitive_mapping_probe/resonance_seismograph.py
|
| 1142 |
|
|
|
|
| 1197 |
import pytest
|
| 1198 |
import torch
|
| 1199 |
from types import SimpleNamespace
|
| 1200 |
+
from cognitive_mapping_probe.llm_iface import LLM, StableLLMConfig
|
| 1201 |
|
| 1202 |
@pytest.fixture(scope="session")
|
| 1203 |
def mock_llm_config():
|
|
|
|
| 1212 |
def mock_llm(mocker, mock_llm_config):
|
| 1213 |
"""
|
| 1214 |
Erstellt einen robusten "Mock-LLM" für Unit-Tests.
|
| 1215 |
+
FINAL KORRIGIERT: Simuliert nun die vollständige `StableLLMConfig`-Abstraktion.
|
| 1216 |
"""
|
| 1217 |
mock_tokenizer = mocker.MagicMock()
|
| 1218 |
mock_tokenizer.eos_token_id = 1
|
| 1219 |
mock_tokenizer.decode.return_value = "mocked text"
|
| 1220 |
|
| 1221 |
+
mock_embedding_layer = mocker.MagicMock()
|
| 1222 |
+
mock_embedding_layer.weight.shape = (32000, mock_llm_config.hidden_size)
|
| 1223 |
+
|
| 1224 |
def mock_model_forward(*args, **kwargs):
|
| 1225 |
batch_size = 1
|
| 1226 |
seq_len = 1
|
|
|
|
| 1239 |
llm_instance = LLM.__new__(LLM)
|
| 1240 |
|
| 1241 |
llm_instance.model = mocker.MagicMock(side_effect=mock_model_forward)
|
|
|
|
| 1242 |
llm_instance.model.config = mock_llm_config
|
| 1243 |
llm_instance.model.device = 'cpu'
|
| 1244 |
llm_instance.model.dtype = torch.float32
|
| 1245 |
+
llm_instance.model.get_input_embeddings.return_value = mock_embedding_layer
|
| 1246 |
+
llm_instance.model.lm_head = mocker.MagicMock(return_value=torch.randn(1, 32000))
|
| 1247 |
|
| 1248 |
+
# FINALE KORREKTUR: Simuliere die Layer-Liste für den Hook-Test
|
| 1249 |
mock_layer = mocker.MagicMock()
|
| 1250 |
mock_layer.register_forward_pre_hook.return_value = mocker.MagicMock()
|
| 1251 |
+
mock_layer_list = [mock_layer] * mock_llm_config.num_hidden_layers
|
| 1252 |
|
| 1253 |
+
# Simuliere die verschiedenen möglichen Architektur-Pfade
|
| 1254 |
+
llm_instance.model.model = SimpleNamespace()
|
| 1255 |
+
llm_instance.model.model.language_model = SimpleNamespace(layers=mock_layer_list)
|
| 1256 |
|
| 1257 |
llm_instance.tokenizer = mock_tokenizer
|
| 1258 |
llm_instance.config = mock_llm_config
|
| 1259 |
llm_instance.seed = 42
|
| 1260 |
llm_instance.set_all_seeds = mocker.MagicMock()
|
| 1261 |
|
| 1262 |
+
# Erzeuge die stabile Konfiguration, die die Tests nun erwarten.
|
| 1263 |
+
llm_instance.stable_config = StableLLMConfig(
|
| 1264 |
+
hidden_dim=mock_llm_config.hidden_size,
|
| 1265 |
+
num_layers=mock_llm_config.num_hidden_layers,
|
| 1266 |
+
layer_list=mock_layer_list # Füge den Verweis auf die Mock-Layer-Liste hinzu
|
| 1267 |
+
)
|
| 1268 |
+
|
| 1269 |
# Patch an allen Stellen, an denen das Modell tatsächlich geladen wird.
|
| 1270 |
mocker.patch('cognitive_mapping_probe.llm_iface.get_or_load_model', return_value=llm_instance)
|
| 1271 |
mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.get_or_load_model', return_value=llm_instance)
|
| 1272 |
+
mocker.patch('cognitive_mapping_probe.auto_experiment.get_or_load_model', return_value=llm_instance)
|
| 1273 |
+
|
| 1274 |
+
mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.get_concept_vector', return_value=torch.randn(mock_llm_config.hidden_size))
|
| 1275 |
|
| 1276 |
return llm_instance
|
| 1277 |
|
|
|
|
| 1287 |
|
| 1288 |
def test_run_single_analysis_display(mocker):
|
| 1289 |
"""Testet den Wrapper für Einzel-Experimente."""
|
| 1290 |
+
mock_results = {"verdict": "V", "stats": {"mean_delta": 1}, "state_deltas": [1.0, 2.0]}
|
| 1291 |
mocker.patch('app.run_seismic_analysis', return_value=mock_results)
|
| 1292 |
mocker.patch('app.cleanup_memory')
|
| 1293 |
|
| 1294 |
verdict, df, raw = run_single_analysis_display(progress=mocker.MagicMock())
|
| 1295 |
|
| 1296 |
assert "V" in verdict and "1.0000" in verdict
|
| 1297 |
+
assert isinstance(df, pd.DataFrame) and len(df) == 2
|
| 1298 |
+
assert "State Change (Delta)" in df.columns
|
| 1299 |
|
| 1300 |
def test_run_auto_suite_display(mocker):
|
| 1301 |
"""
|
| 1302 |
Testet den Wrapper für die Auto-Experiment-Suite.
|
| 1303 |
+
FINAL KORRIGIERT: Rekonstruiert DataFrames aus den serialisierten `dict`-Werten
|
| 1304 |
+
der Gradio-Komponenten, um die tatsächliche API-Nutzung widerzuspiegeln.
|
| 1305 |
"""
|
| 1306 |
+
mock_summary_df = pd.DataFrame([{"Experiment": "E1", "Mean Delta": 1.5}])
|
| 1307 |
+
mock_plot_df = pd.DataFrame([{"Step": 0, "Delta": 1.0, "Experiment": "E1"}, {"Step": 1, "Delta": 2.0, "Experiment": "E1"}])
|
| 1308 |
+
mock_results = {"E1": {"stats": {"mean_delta": 1.5}}}
|
| 1309 |
|
| 1310 |
mocker.patch('app.run_auto_suite', return_value=(mock_summary_df, mock_plot_df, mock_results))
|
| 1311 |
mocker.patch('app.cleanup_memory')
|
| 1312 |
|
| 1313 |
+
dataframe_component, plot_component, raw_json_str = run_auto_suite_display(
|
| 1314 |
+
"mock-model", 100, 42, "mock_exp", progress=mocker.MagicMock()
|
| 1315 |
)
|
| 1316 |
|
| 1317 |
+
# KORREKTUR: Die `.value` Eigenschaft einer gr.DataFrame Komponente ist ein Dictionary.
|
| 1318 |
+
# Wir müssen den pandas.DataFrame daraus rekonstruieren, um ihn zu vergleichen.
|
| 1319 |
+
assert isinstance(dataframe_component, gr.DataFrame)
|
| 1320 |
+
assert isinstance(dataframe_component.value, dict)
|
| 1321 |
+
reconstructed_summary_df = pd.DataFrame(
|
| 1322 |
+
data=dataframe_component.value['data'],
|
| 1323 |
+
columns=dataframe_component.value['headers']
|
| 1324 |
+
)
|
| 1325 |
+
assert_frame_equal(reconstructed_summary_df, mock_summary_df)
|
| 1326 |
|
| 1327 |
+
# Dasselbe gilt für die LinePlot-Komponente
|
| 1328 |
assert isinstance(plot_component, gr.LinePlot)
|
| 1329 |
assert isinstance(plot_component.value, dict)
|
| 1330 |
+
reconstructed_plot_df = pd.DataFrame(
|
| 1331 |
+
data=plot_component.value['data'],
|
| 1332 |
+
columns=plot_component.value['columns']
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1333 |
)
|
| 1334 |
+
assert_frame_equal(reconstructed_plot_df, mock_plot_df)
|
| 1335 |
|
| 1336 |
+
# Der JSON-String bleibt ein String
|
| 1337 |
+
assert isinstance(raw_json_str, str)
|
| 1338 |
+
assert '"mean_delta": 1.5' in raw_json_str
|
|
|
|
|
|
|
| 1339 |
|
| 1340 |
[File Ends] tests/test_app_logic.py
|
| 1341 |
|
|
|
|
| 1348 |
from cognitive_mapping_probe.llm_iface import get_or_load_model, LLM
|
| 1349 |
from cognitive_mapping_probe.resonance_seismograph import run_silent_cogitation_seismic
|
| 1350 |
from cognitive_mapping_probe.utils import dbg
|
| 1351 |
+
from cognitive_mapping_probe.concepts import get_concept_vector, _get_last_token_hidden_state
|
|
|
|
| 1352 |
|
| 1353 |
# --- Tests for llm_iface.py ---
|
| 1354 |
|
| 1355 |
@patch('cognitive_mapping_probe.llm_iface.AutoTokenizer.from_pretrained')
|
| 1356 |
@patch('cognitive_mapping_probe.llm_iface.AutoModelForCausalLM.from_pretrained')
|
| 1357 |
def test_get_or_load_model_seeding(mock_model_loader, mock_tokenizer_loader, mocker):
|
| 1358 |
+
"""
|
| 1359 |
+
Testet, ob `get_or_load_model` die Seeds korrekt setzt.
|
| 1360 |
+
FINAL KORRIGIERT: Der lokale Mock ist nun vollständig konfiguriert.
|
| 1361 |
+
"""
|
| 1362 |
mock_model = mocker.MagicMock()
|
| 1363 |
mock_model.eval.return_value = None
|
| 1364 |
mock_model.set_attn_implementation.return_value = None
|
|
|
|
| 1365 |
mock_model.device = 'cpu'
|
| 1366 |
+
|
| 1367 |
+
mock_model.get_input_embeddings.return_value.weight.shape = (32000, 128)
|
| 1368 |
+
mock_model.config = mocker.MagicMock()
|
| 1369 |
+
mock_model.config.num_hidden_layers = 2
|
| 1370 |
+
mock_model.config.hidden_size = 128
|
| 1371 |
+
|
| 1372 |
+
# Simuliere die Architektur für die Layer-Extraktion
|
| 1373 |
+
mock_model.model.language_model.layers = [mocker.MagicMock()] * 2
|
| 1374 |
+
|
| 1375 |
mock_model_loader.return_value = mock_model
|
| 1376 |
mock_tokenizer_loader.return_value = mocker.MagicMock()
|
| 1377 |
|
|
|
|
| 1384 |
mock_torch_manual_seed.assert_called_with(seed)
|
| 1385 |
mock_np_random_seed.assert_called_with(seed)
|
| 1386 |
|
| 1387 |
+
|
| 1388 |
# --- Tests for resonance_seismograph.py ---
|
| 1389 |
|
| 1390 |
def test_run_silent_cogitation_seismic_output_shape_and_type(mock_llm):
|
|
|
|
| 1398 |
assert all(isinstance(delta, float) for delta in state_deltas)
|
| 1399 |
|
| 1400 |
def test_run_silent_cogitation_with_injection_hook_usage(mock_llm):
|
| 1401 |
+
"""
|
| 1402 |
+
Testet, ob bei einer Injektion der Hook korrekt registriert wird.
|
| 1403 |
+
FINAL KORRIGIERT: Greift auf die stabile Abstraktionsschicht zu.
|
| 1404 |
+
"""
|
| 1405 |
num_steps = 5
|
| 1406 |
+
injection_vector = torch.randn(mock_llm.stable_config.hidden_dim)
|
| 1407 |
run_silent_cogitation_seismic(
|
| 1408 |
llm=mock_llm, prompt_type="resonance_prompt",
|
| 1409 |
num_steps=num_steps, temperature=0.7,
|
| 1410 |
injection_vector=injection_vector, injection_strength=1.0
|
| 1411 |
)
|
| 1412 |
+
# KORREKTUR: Der Test muss denselben Abstraktionspfad verwenden wie die Anwendung.
|
| 1413 |
+
# Wir prüfen den Hook-Aufruf auf dem ersten Layer der stabilen, abstrahierten Layer-Liste.
|
| 1414 |
+
assert mock_llm.stable_config.layer_list[0].register_forward_pre_hook.call_count == num_steps
|
| 1415 |
|
| 1416 |
# --- Tests for concepts.py ---
|
| 1417 |
|
| 1418 |
+
def test_get_last_token_hidden_state_robustness(mock_llm):
|
| 1419 |
+
"""Testet die robuste `_get_last_token_hidden_state` Funktion."""
|
| 1420 |
+
hs = _get_last_token_hidden_state(mock_llm, "test prompt")
|
| 1421 |
+
assert hs.shape == (mock_llm.stable_config.hidden_dim,)
|
| 1422 |
+
|
| 1423 |
def test_get_concept_vector_logic(mock_llm, mocker):
|
| 1424 |
"""
|
| 1425 |
Testet die Logik von `get_concept_vector`.
|
|
|
|
| 1426 |
"""
|
| 1427 |
mock_hidden_states = [
|
| 1428 |
+
torch.ones(mock_llm.stable_config.hidden_dim) * 10, # target concept
|
| 1429 |
+
torch.ones(mock_llm.stable_config.hidden_dim) * 2, # baseline word 1
|
| 1430 |
+
torch.ones(mock_llm.stable_config.hidden_dim) * 4 # baseline word 2
|
| 1431 |
]
|
|
|
|
| 1432 |
mocker.patch(
|
| 1433 |
'cognitive_mapping_probe.concepts._get_last_token_hidden_state',
|
| 1434 |
side_effect=mock_hidden_states
|
|
|
|
| 1436 |
|
| 1437 |
concept_vector = get_concept_vector(mock_llm, "test", baseline_words=["a", "b"])
|
| 1438 |
|
| 1439 |
+
# Erwarteter Vektor: 10 - mean(2, 4) = 10 - 3 = 7
|
| 1440 |
+
expected_vector = torch.ones(mock_llm.stable_config.hidden_dim) * 7
|
| 1441 |
assert torch.allclose(concept_vector, expected_vector)
|
| 1442 |
|
| 1443 |
# --- Tests for utils.py ---
|
|
|
|
| 1471 |
def test_run_seismic_analysis_no_injection(mocker, mock_llm):
|
| 1472 |
"""Testet den Orchestrator im Baseline-Modus."""
|
| 1473 |
mock_run_seismic = mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.run_silent_cogitation_seismic', return_value=[1.0])
|
| 1474 |
+
mock_get_concept = mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.get_concept_vector')
|
| 1475 |
+
|
| 1476 |
run_seismic_analysis(
|
| 1477 |
model_id="mock", prompt_type="test", seed=42, num_steps=1,
|
| 1478 |
concept_to_inject="", injection_strength=0.0, progress_callback=mocker.MagicMock(),
|
| 1479 |
+
llm_instance=mock_llm
|
| 1480 |
)
|
| 1481 |
mock_run_seismic.assert_called_once()
|
| 1482 |
+
mock_get_concept.assert_not_called()
|
| 1483 |
|
| 1484 |
def test_run_seismic_analysis_with_injection(mocker, mock_llm):
|
| 1485 |
"""Testet den Orchestrator mit Injektion."""
|
| 1486 |
+
mock_run_seismic = mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.run_silent_cogitation_seismic', return_value=[1.0])
|
| 1487 |
+
mock_get_concept = mocker.patch(
|
| 1488 |
+
'cognitive_mapping_probe.orchestrator_seismograph.get_concept_vector',
|
| 1489 |
+
return_value=torch.randn(10)
|
| 1490 |
+
)
|
| 1491 |
+
|
| 1492 |
run_seismic_analysis(
|
| 1493 |
model_id="mock", prompt_type="test", seed=42, num_steps=1,
|
| 1494 |
+
concept_to_inject="test_concept", injection_strength=1.5, progress_callback=mocker.MagicMock(),
|
| 1495 |
+
llm_instance=mock_llm
|
| 1496 |
)
|
| 1497 |
+
mock_run_seismic.assert_called_once()
|
| 1498 |
+
mock_get_concept.assert_called_once_with(mock_llm, "test_concept")
|
| 1499 |
+
|
| 1500 |
|
| 1501 |
def test_get_curated_experiments_structure():
|
| 1502 |
"""Testet die Datenstruktur der kuratierten Experimente."""
|
| 1503 |
experiments = get_curated_experiments()
|
| 1504 |
assert isinstance(experiments, dict)
|
| 1505 |
+
assert "Sequential Intervention (Self-Analysis -> Deletion)" in experiments
|
| 1506 |
+
protocol = experiments["Sequential Intervention (Self-Analysis -> Deletion)"]
|
| 1507 |
+
assert isinstance(protocol, list) and len(protocol) == 2
|
| 1508 |
|
| 1509 |
def test_run_auto_suite_special_protocol(mocker, mock_llm):
|
| 1510 |
"""
|
| 1511 |
Testet den speziellen Logik-Pfad für das Interventions-Protokoll.
|
| 1512 |
+
FINAL KORRIGIERT: Verwendet den korrekten, aktuellen Experiment-Namen.
|
|
|
|
| 1513 |
"""
|
|
|
|
|
|
|
| 1514 |
mock_analysis = mocker.patch('cognitive_mapping_probe.auto_experiment.run_seismic_analysis', return_value={"stats": {}, "state_deltas": []})
|
| 1515 |
+
mocker.patch('cognitive_mapping_probe.auto_experiment.get_or_load_model', return_value=mock_llm)
|
| 1516 |
+
|
| 1517 |
+
# KORREKTUR: Verwende den neuen, korrekten Namen des Experiments, um
|
| 1518 |
+
# den `if`-Zweig in `run_auto_suite` zu treffen.
|
| 1519 |
+
correct_experiment_name = "Sequential Intervention (Self-Analysis -> Deletion)"
|
| 1520 |
|
| 1521 |
run_auto_suite(
|
| 1522 |
+
model_id="mock-4b", num_steps=10, seed=42,
|
| 1523 |
+
experiment_name=correct_experiment_name,
|
| 1524 |
progress_callback=mocker.MagicMock()
|
| 1525 |
)
|
| 1526 |
|
| 1527 |
+
# Die restlichen Assertions sind nun wieder gültig.
|
| 1528 |
assert mock_analysis.call_count == 2
|
| 1529 |
|
| 1530 |
+
first_call_kwargs = mock_analysis.call_args_list[0].kwargs
|
| 1531 |
+
second_call_kwargs = mock_analysis.call_args_list[1].kwargs
|
| 1532 |
+
|
| 1533 |
+
assert 'llm_instance' in first_call_kwargs
|
| 1534 |
+
assert 'llm_instance' in second_call_kwargs
|
| 1535 |
+
assert first_call_kwargs['llm_instance'] is mock_llm
|
| 1536 |
+
assert second_call_kwargs['llm_instance'] is mock_llm
|
| 1537 |
+
|
| 1538 |
+
assert first_call_kwargs['concept_to_inject'] != ""
|
| 1539 |
+
assert second_call_kwargs['concept_to_inject'] == ""
|
| 1540 |
|
| 1541 |
[File Ends] tests/test_orchestration.py
|
| 1542 |
|