import pytest import torch from types import SimpleNamespace from cognitive_mapping_probe.llm_iface import LLM @pytest.fixture(scope="session") def mock_llm_config(): """Stellt eine minimale, Schein-Konfiguration für das LLM bereit.""" return SimpleNamespace( hidden_size=128, num_hidden_layers=2, num_attention_heads=4 ) @pytest.fixture def mock_llm(mocker, mock_llm_config): """ Erstellt einen schnellen "Mock-LLM" für Unit-Tests. ERWEITERT: Patcht nun auch die `concepts`-Abhängigkeit. """ mock_tokenizer = mocker.MagicMock() mock_tokenizer.eos_token_id = 1 def mock_model_forward(*args, **kwargs): batch_size = 1 if 'input_ids' in kwargs: seq_len = kwargs['input_ids'].shape[1] elif 'past_key_values' in kwargs: seq_len = kwargs['past_key_values'][0][0].shape[-2] + 1 else: seq_len = 1 mock_outputs = { "hidden_states": tuple([torch.randn(batch_size, seq_len, mock_llm_config.hidden_size) for _ in range(mock_llm_config.num_hidden_layers + 1)]), "past_key_values": tuple([(torch.randn(batch_size, mock_llm_config.num_attention_heads, seq_len, 16), torch.randn(batch_size, mock_llm_config.num_attention_heads, seq_len, 16)) for _ in range(mock_llm_config.num_hidden_layers)]), "logits": torch.randn(batch_size, seq_len, 32000) } return SimpleNamespace(**mock_outputs) llm_instance = LLM.__new__(LLM) llm_instance.model = mock_model_forward llm_instance.model.config = mock_llm_config llm_instance.model.device = 'cpu' llm_instance.model.dtype = torch.float32 mock_lm_head = mocker.MagicMock(return_value=torch.randn(1, 32000)) llm_instance.model.lm_head = mock_lm_head llm_instance.tokenizer = mock_tokenizer llm_instance.config = mock_llm_config llm_instance.seed = 42 llm_instance.set_all_seeds = mocker.MagicMock() mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.get_or_load_model', return_value=llm_instance) # Patch für die wiederhergestellte `concepts`-Funktion mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.get_concept_vector', return_value=torch.randn(mock_llm_config.hidden_size)) return llm_instance