import pandas as pd import pytest import gradio as gr from pandas.testing import assert_frame_equal from app import run_single_analysis_display, run_auto_suite_display def test_run_single_analysis_display(mocker): """Testet den Wrapper für Einzel-Experimente.""" mock_results = {"verdict": "V", "stats": {"mean_delta": 1}, "state_deltas": [1.0, 2.0]} mocker.patch('app.run_seismic_analysis', return_value=mock_results) mocker.patch('app.cleanup_memory') verdict, df, raw = run_single_analysis_display(progress=mocker.MagicMock()) assert "V" in verdict and "1.0000" in verdict assert isinstance(df, pd.DataFrame) and len(df) == 2 assert "State Change (Delta)" in df.columns def test_run_auto_suite_display(mocker): """ Testet den Wrapper für die Auto-Experiment-Suite. FINAL KORRIGIERT: Rekonstruiert DataFrames aus den serialisierten `dict`-Werten der Gradio-Komponenten, um die tatsächliche API-Nutzung widerzuspiegeln. """ mock_summary_df = pd.DataFrame([{"Experiment": "E1", "Mean Delta": 1.5}]) mock_plot_df = pd.DataFrame([{"Step": 0, "Delta": 1.0, "Experiment": "E1"}, {"Step": 1, "Delta": 2.0, "Experiment": "E1"}]) mock_results = {"E1": {"stats": {"mean_delta": 1.5}}} mocker.patch('app.run_auto_suite', return_value=(mock_summary_df, mock_plot_df, mock_results)) mocker.patch('app.cleanup_memory') dataframe_component, plot_component, raw_json_str = run_auto_suite_display( "mock-model", 100, 42, "mock_exp", progress=mocker.MagicMock() ) # KORREKTUR: Die `.value` Eigenschaft einer gr.DataFrame Komponente ist ein Dictionary. # Wir müssen den pandas.DataFrame daraus rekonstruieren, um ihn zu vergleichen. assert isinstance(dataframe_component, gr.DataFrame) assert isinstance(dataframe_component.value, dict) reconstructed_summary_df = pd.DataFrame( data=dataframe_component.value['data'], columns=dataframe_component.value['headers'] ) assert_frame_equal(reconstructed_summary_df, mock_summary_df) # Dasselbe gilt für die LinePlot-Komponente assert isinstance(plot_component, gr.LinePlot) assert isinstance(plot_component.value, dict) reconstructed_plot_df = pd.DataFrame( data=plot_component.value['data'], columns=plot_component.value['columns'] ) assert_frame_equal(reconstructed_plot_df, mock_plot_df) # Der JSON-String bleibt ein String assert isinstance(raw_json_str, str) assert '"mean_delta": 1.5' in raw_json_str