import torch from typing import List from tqdm import tqdm from .llm_iface import LLM from .utils import dbg # A list of neutral, common words used to calculate a baseline activation. # This helps to isolate the unique activation pattern of the target concept. BASELINE_WORDS = [ "thing", "place", "idea", "person", "object", "time", "way", "day", "man", "world", "life", "hand", "part", "child", "eye", "woman", "fact", "group", "case", "point" ] @torch.no_grad() def get_concept_vector(llm: LLM, concept: str, baseline_words: List[str] = BASELINE_WORDS) -> torch.Tensor: """ Extracts a concept vector using the contrastive method, inspired by Anthropic's research. It computes the activation for the target concept and subtracts the mean activation of several neutral baseline words to distill a more pure representation. """ dbg(f"Extracting contrastive concept vector for '{concept}'...") def get_last_token_hidden_state(prompt: str) -> torch.Tensor: """Helper function to get the hidden state of the final token of a prompt.""" inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device) # Ensure the operation does not build a computation graph with torch.no_grad(): # KORREKTUR: Hier stand fälschlicherweise 'll.model'. Korrigiert zu 'llm.model'. outputs = llm.model(**inputs, output_hidden_states=True) # We take the hidden state from the last layer [-1], for the last token [0, -1, :] last_hidden_state = outputs.hidden_states[-1][0, -1, :].cpu() assert last_hidden_state.shape == (llm.config.hidden_size,), \ f"Hidden state shape mismatch. Expected {(llm.config.hidden_size,)}, got {last_hidden_state.shape}" return last_hidden_state # A simple, neutral prompt template to elicit the concept prompt_template = "Here is a sentence about the concept of {}." # 1. Get activation for the target concept dbg(f" - Getting activation for '{concept}'") target_hs = get_last_token_hidden_state(prompt_template.format(concept)) # 2. Get activations for all baseline words and average them baseline_hss = [] for word in tqdm(baseline_words, desc=f" - Calculating baseline for '{concept}'", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"): baseline_hss.append(get_last_token_hidden_state(prompt_template.format(word))) assert all(hs.shape == target_hs.shape for hs in baseline_hss), "Shape mismatch in baseline hidden states." mean_baseline_hs = torch.stack(baseline_hss).mean(dim=0) dbg(f" - Mean baseline vector computed with norm {torch.norm(mean_baseline_hs).item():.2f}") # 3. The final concept vector is the difference concept_vector = target_hs - mean_baseline_hs norm = torch.norm(concept_vector).item() dbg(f"Concept vector for '{concept}' extracted with norm {norm:.2f}.") assert torch.isfinite(concept_vector).all(), "Concept vector contains NaN or Inf values." return concept_vector