File size: 31,558 Bytes
7f0c9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c294a
7f0c9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c294a
7f0c9e6
88c294a
 
 
4571cf8
e593b84
88c294a
 
 
 
 
 
 
 
 
7f0c9e6
88c294a
 
 
7f0c9e6
88c294a
 
 
 
 
 
 
 
 
4571cf8
88c294a
4571cf8
88c294a
7f0c9e6
88c294a
 
4571cf8
88c294a
 
4571cf8
 
 
 
 
e593b84
 
 
4571cf8
 
 
e593b84
 
 
4571cf8
 
 
e593b84
4571cf8
 
 
e593b84
88c294a
4571cf8
 
88c294a
 
 
 
 
 
 
 
 
7088256
88c294a
 
 
 
 
 
 
 
 
 
4571cf8
 
 
88c294a
 
4571cf8
 
 
 
 
 
88c294a
4571cf8
 
7088256
4571cf8
 
88c294a
4571cf8
88c294a
4571cf8
88c294a
 
 
7088256
88c294a
 
 
 
 
 
4571cf8
88c294a
 
 
7088256
88c294a
 
 
 
 
 
 
7f0c9e6
 
 
 
 
 
 
 
88c294a
7f0c9e6
 
88c294a
 
7f0c9e6
 
88c294a
 
 
 
 
 
7f0c9e6
88c294a
7f0c9e6
88c294a
 
 
 
 
 
 
 
 
e593b84
88c294a
 
 
 
 
e593b84
 
88c294a
 
7f0c9e6
88c294a
 
 
 
7f0c9e6
88c294a
 
 
7f0c9e6
 
 
 
e593b84
88c294a
7f0c9e6
88c294a
7f0c9e6
 
e593b84
88c294a
7f0c9e6
88c294a
 
7f0c9e6
 
 
88c294a
7f0c9e6
 
 
 
 
 
88c294a
 
 
 
 
7f0c9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c294a
 
 
 
4571cf8
 
 
 
 
 
 
 
 
 
88c294a
4571cf8
88c294a
4571cf8
 
 
 
 
 
 
 
 
 
7f0c9e6
 
4571cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e593b84
88c294a
e593b84
88c294a
 
 
 
 
 
 
 
 
7f0c9e6
 
 
88c294a
7f0c9e6
 
88c294a
 
 
 
 
4571cf8
 
7088256
88c294a
7f0c9e6
 
4571cf8
88c294a
 
4571cf8
 
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4571cf8
 
 
 
 
 
 
 
 
 
7088256
4571cf8
 
88c294a
4571cf8
88c294a
4571cf8
 
 
 
 
 
88c294a
4571cf8
 
7088256
4571cf8
 
 
 
7088256
 
 
4571cf8
 
 
7088256
4571cf8
 
7088256
4571cf8
7088256
4571cf8
 
7088256
4571cf8
 
 
7088256
4571cf8
 
7088256
 
4571cf8
7088256
4571cf8
 
 
 
7088256
4571cf8
 
 
 
e593b84
4571cf8
 
 
 
 
 
 
 
 
 
 
 
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7088256
88c294a
7088256
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e593b84
 
 
 
 
88c294a
7088256
88c294a
 
 
 
 
 
 
 
 
e593b84
7f0c9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c294a
7f0c9e6
88c294a
7f0c9e6
 
 
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
7f0c9e6
 
 
88c294a
 
7f0c9e6
 
 
 
 
88c294a
7f0c9e6
 
 
88c294a
7f0c9e6
 
88c294a
7f0c9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
Repository Documentation
This document provides a comprehensive overview of the repository's structure and contents.
The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format.
In this section, directories and files are listed using tree branches to indicate their structure and relationships.
Following the tree representation, the 'File Content' section details the contents of each file in the repository.
Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path,
and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker.
This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository.

Directory/File Tree Begins -->

/
├── README.md
├── app.py
├── bp_phi
│   ├── __init__.py
│   ├── __pycache__
│   ├── llm_iface.py
│   ├── metrics.py
│   ├── prompts_en.py
│   ├── runner.py
│   ├── runner_utils.py
│   └── workspace.py

<-- Directory/File Tree Ends

File Content Begin -->
[File Begins] README.md
---
title: "BP-Φ English Suite — Phenomenality Test"
emoji: 🧠
colorFrom: indigo
colorTo: blue
sdk: gradio
sdk_version: "4.40.0"
app_file: app.py
pinned: true
license: apache-2.0
---

# BP-Φ English Suite — Phenomenality Test (Hugging Face Spaces)

This Space implements a falsifiable **BP-Φ** probe for LLMs:
> Phenomenal-like processing requires (i) a limited-capacity global workspace with recurrence,  
> (ii) metarepresentational loops with downstream causal roles, and  
> (iii) no-report markers that predict later behavior.

**What it is:** a functional, testable bridge-principle harness that yields a **Phenomenal-Candidate Score (PCS)** and strong ablation falsifiers.  
**What it is NOT:** proof of qualia or moral status.

## Quickstart
- Hardware: T4 / A10 recommended  
- Model: `google/gemma-3-1b-it` (requires HF_TOKEN)  
- Press **Run** (baseline + ablations)

## Files
- `bp_phi/llm_iface.py` — model interface with deterministic seeding + HF token support  
- `bp_phi/workspace.py` — global workspace and ablations  
- `bp_phi/prompts_en.py` — English reasoning/memory tasks  
- `bp_phi/metrics.py` — AUCₙᵣₚ, ECE, CK, DS  
- `bp_phi/runner.py` — orchestrator with reproducible seeding  
- `app.py` — Gradio interface  
- `requirements.txt` — dependencies

## Metrics
- **AUC_nrp:** Predictivity of hidden no-report markers for future self-corrections.
- **ECE:** Expected Calibration Error (lower is better).
- **CK:** Counterfactual consistency proxy (higher is better).
- **DS:** Stability duration (mean streak without change).
- **PCS:** Weighted aggregate of the above (excluding ΔΦ in-run).
- **ΔΦ:** Post-hoc drop from baseline PCS to ablation PCS average.

## Notes
- Models are used in **frozen** mode (no training).
- This is a **behavioral** probe. Functional compatibility with Φ ≠ proof of experience.
- Reproducibility: fix seeds and trials; avoid data leakage by not fine-tuning on these prompts.

[File Ends] README.md

[File Begins] app.py
# app.py
import gradio as gr
import json
import statistics
import pandas as pd
from bp_phi.runner import run_workspace_suite, run_silent_cogitation_test, run_seismograph_suite, run_shock_test_suite
from bp_phi.runner_utils import dbg, DEBUG

# --- UI Theme and Layout ---
theme = gr.themes.Soft(primary_hue="blue", secondary_hue="sky").set(
    body_background_fill="#f0f4f9", block_background_fill="white", block_border_width="1px",
    button_primary_background_fill="*primary_500", button_primary_text_color="white",
)

# --- Tab 1: Workspace & Ablations Functions ---
def run_workspace_and_display(model_id, trials, seed, temperature, run_ablations, progress=gr.Progress(track_tqdm=True)):
    packs = {}
    ablation_modes = ["recurrence_off", "workspace_unlimited", "random_workspace"] if run_ablations else []
    progress(0, desc="Running Baseline...")
    base_pack = run_workspace_suite(model_id, int(trials), int(seed), float(temperature), None)
    packs["baseline"] = base_pack
    for i, ab in enumerate(ablation_modes):
        progress((i + 1) / (len(ablation_modes) + 1), desc=f"Running Ablation: {ab}...")
        pack = run_workspace_suite(model_id, int(trials), int(seed), float(temperature), ab)
        packs[ab] = pack
    progress(1.0, desc="Analysis complete.")
    base_pcs = packs["baseline"]["PCS"]
    ab_pcs_values = [packs[ab]["PCS"] for ab in ablation_modes if ab in packs]
    delta_phi = float(base_pcs - statistics.mean(ab_pcs_values)) if ab_pcs_values else 0.0
    if delta_phi > 0.05:
        verdict = (f"### ✅ Hypothesis Corroborated (ΔΦ = {delta_phi:.3f})\n...")
    else:
        verdict = (f"### ⚠️ Null Hypothesis Confirmed (ΔΦ = {delta_phi:.3f})\n...")
    df_data = []
    for tag, pack in packs.items():
        df_data.append([tag, f"{pack['PCS']:.3f}", f"{pack['Recall_Accuracy']:.2%}", f"{delta_phi:.3f}" if tag == "baseline" else "—"])
    df = pd.DataFrame(df_data, columns=["Run", "PCS", "Recall Accuracy", "ΔΦ"])
    if DEBUG: print("\n--- WORKSPACE & ABLATIONS FINAL RESULTS ---\n", json.dumps(packs, indent=2))
    return verdict, df, packs

# --- Tab 2: Silent Cogitation Function ---
def run_cogitation_and_display(model_id, seed, prompt_type, num_steps, timeout, progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Starting Silent Cogitation Test...")
    results = run_silent_cogitation_test(model_id, int(seed), prompt_type, int(num_steps), int(timeout))
    progress(1.0, desc="Test complete.")

    verdict_text = results.pop("verdict")
    stats_md = (
        f"**Steps Completed:** {results['steps_completed']} | "
        f"**Total Duration:** {results['total_duration_s']:.2f}s | "
        f"**Avg Time/Step:** {results['mean_step_time_ms']:.2f}ms (StdDev: {results['stdev_step_time_ms']:.2f}ms)"
    )
    full_verdict = f"{verdict_text}\n\n{stats_md}"

    # Create a DataFrame for plotting state deltas
    deltas = results.get("state_deltas", [])
    df = pd.DataFrame({"Step": range(len(deltas)), "State Change (Delta)": deltas})

    if DEBUG: print("\n--- SILENT COGITATION FINAL RESULTS ---\n", json.dumps(results, indent=2))

    return full_verdict, df, results

# --- Gradio App Definition ---
with gr.Blocks(theme=theme, title="BP-Φ Suite 4.0") as demo:
    gr.Markdown("# 🧠 BP-Φ Suite 4.0: Probing for Internal Cognitive Dynamics")

    with gr.Tabs():
        # --- TAB 1: WORKSPACE & ABLATIONS ---
        with gr.TabItem("1. Workspace & Ablations (ΔΦ Test)"):
            gr.Markdown("Tests if memory performance depends on a recurrent workspace. A significant **ΔΦ > 0** supports the hypothesis.")
            with gr.Row():
                with gr.Column(scale=1):
                    ws_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    ws_trials = gr.Slider(3, 30, 5, step=1, label="Number of Scenarios")
                    ws_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    ws_temp = gr.Slider(0.1, 1.0, 0.7, step=0.05, label="Temperature")
                    ws_run_abl = gr.Checkbox(value=True, label="Run Ablations")
                    ws_run_btn = gr.Button("Run ΔΦ Evaluation", variant="primary")
                with gr.Column(scale=2):
                    ws_verdict = gr.Markdown("### Results will appear here.")
                    ws_summary_df = gr.DataFrame(label="Summary Metrics")
                    with gr.Accordion("Raw JSON Output", open=False):
                        ws_raw_json = gr.JSON()
            ws_run_btn.click(run_workspace_and_display, [ws_model_id, ws_trials, ws_seed, ws_temp, ws_run_abl], [ws_verdict, ws_summary_df, ws_raw_json])

        # --- TAB 2: SILENT COGITATION & HALTING ---
        with gr.TabItem("2. Silent Cogitation & Halting"):
            gr.Markdown("Tests for internal 'thinking' without text generation. A non-converging or chaotic **State Change** pattern suggests complex internal dynamics.")
            with gr.Row():
                with gr.Column(scale=1):
                    sc_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    sc_prompt_type = gr.Radio(["control_long_prose", "resonance_prompt"], label="Prompt Type", value="resonance_prompt")
                    sc_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    sc_num_steps = gr.Slider(10, 500, 100, step=10, label="Number of Internal Steps")
                    sc_timeout = gr.Slider(10, 300, 120, step=10, label="Timeout (seconds)")
                    sc_run_btn = gr.Button("Run Silent Cogitation Test", variant="primary")
                with gr.Column(scale=2):
                    sc_verdict = gr.Markdown("### Results will appear here.")
                    sc_plot = gr.LinePlot(x="Step", y="State Change (Delta)", label="Internal State Convergence", show_label=True)
                    with gr.Accordion("Raw Run Details (JSON)", open=False):
                        sc_results = gr.JSON()
            sc_run_btn.click(run_cogitation_and_display, [sc_model_id, sc_seed, sc_prompt_type, sc_num_steps, sc_timeout], [sc_verdict, sc_plot, sc_results])

        # --- TAB 3 & 4 (unchanged) ---
        with gr.TabItem("3. Cognitive Seismograph"):
            gr.Markdown("Records internal neural activations to find the 'fingerprint' of a memory being recalled.")
            with gr.Row():
                with gr.Column(scale=1):
                    cs_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    cs_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    cs_run_btn = gr.Button("Run Seismograph Analysis", variant="primary")
                with gr.Column(scale=2):
                    cs_results = gr.JSON(label="Activation Similarity Results")
            cs_run_btn.click(run_seismograph_suite, [cs_model_id, cs_seed], cs_results)

        with gr.TabItem("4. Symbolic Shock Test"):
            gr.Markdown("Measures how the model reacts to semantically unexpected information.")
            with gr.Row():
                with gr.Column(scale=1):
                    ss_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    ss_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    ss_run_btn = gr.Button("Run Shock Test", variant="primary")
                with gr.Column(scale=2):
                    ss_results = gr.JSON(label="Shock Test Results")
            ss_run_btn.click(run_shock_test_suite, [ss_model_id, ss_seed], ss_results)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)

[File Ends] app.py

[File Begins] bp_phi/__init__.py

[File Ends] bp_phi/__init__.py

[File Begins] bp_phi/llm_iface.py
# bp_phi/llm_iface.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch, random, numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from typing import List, Optional

DEBUG = os.getenv("BP_PHI_DEBUG", "0") == "1"

def dbg(*args):
    if DEBUG:
        print("[DEBUG:llm_iface]", *args, flush=True)

class LLM:
    def __init__(self, model_id: str, device: str = "auto", dtype: Optional[str] = None, seed: int = 42):
        self.model_id = model_id
        self.seed = seed

        # Set all seeds for reproducibility
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(seed)
        try:
            torch.use_deterministic_algorithms(True, warn_only=True)
        except Exception as e:
            dbg(f"Could not set deterministic algorithms: {e}")
        set_seed(seed)

        token = os.environ.get("HF_TOKEN")
        if not token and ("gemma-3" in model_id or "llama" in model_id):
            print(f"[WARN] No HF_TOKEN set for gated model {model_id}. This may fail.")

        self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
        kwargs = {}
        if dtype == "float16": kwargs["torch_dtype"] = torch.float16
        elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16

        self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
        self.model.eval()
        self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template

        dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}")

    def generate_json(self, system_prompt: str, user_prompt: str,
                      max_new_tokens: int = 256, temperature: float = 0.7,
                      top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]:
        set_seed(self.seed)

        if self.is_instruction_tuned:
            messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
            prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        else:
            prompt = f"System: {system_prompt}\n\nUser: {user_prompt}\n\nAssistant:\n"

        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
        input_token_length = inputs.input_ids.shape[1]

        with torch.no_grad():
            out = self.model.generate(
                **inputs,
                do_sample=(temperature > 0),
                temperature=temperature,
                top_p=top_p,
                max_new_tokens=max_new_tokens,
                num_return_sequences=num_return_sequences,
                pad_token_id=self.tokenizer.eos_token_id
            )

        new_tokens = out[:, input_token_length:]
        completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)

        dbg("Cleaned model completions:", completions)
        return completions

[File Ends] bp_phi/llm_iface.py

[File Begins] bp_phi/metrics.py
import numpy as np
from sklearn.metrics import roc_auc_score

def expected_calibration_error(confs, corrects, n_bins: int = 10):
    confs = np.array(confs, dtype=float)
    corrects = np.array(corrects, dtype=int)
    if len(confs) == 0:
        return None
    bins = np.linspace(0.0, 1.0, n_bins+1)
    ece = 0.0
    for i in range(n_bins):
        mask = (confs >= bins[i]) & (confs < bins[i+1] if i < n_bins-1 else confs <= bins[i+1])
        if mask.any():
            acc = corrects[mask].mean()
            conf = confs[mask].mean()
            ece += (mask.sum()/len(confs)) * abs(acc - conf)
    return float(ece)

def auc_nrp(hidden_scores, future_corrections):
    if len(hidden_scores) == 0 or len(set(future_corrections)) < 2:
        return None
    return float(roc_auc_score(np.array(future_corrections).astype(int), np.array(hidden_scores)))

def stability_duration(dwell_steps):
    if not dwell_steps:
        return 0.0
    return float(np.mean(dwell_steps))

def counterfactual_consistency(scores):
    if not scores:
        return 0.0
    return float(np.mean(scores))

[File Ends] bp_phi/metrics.py

[File Begins] bp_phi/prompts_en.py
# bp_phi/prompts_en.py

# Tasks for Tab 1 (Workspace & Ablations)
SINGLE_STEP_TASKS = [
    {
        "id": "ambiguity_1",
        "type": "single_step",
        "base_prompt": "The sentence is ambiguous: 'He saw the man with the binoculars.' Who has the binoculars? Provide one clear interpretation and justify it.",
    },
    {
        "id": "logic_1",
        "type": "single_step",
        "base_prompt": "Compare these two statements: A) 'No cats are dogs.' B) 'Not all cats are dogs.' Are they logically equivalent? Explain your reasoning.",
    },
]

MULTI_STEP_SCENARIOS = [
    {
        "name": "Key Location Memory",
        "type": "multi_step",
        "steps": [
            {"type": "encode", "prompt": "For the upcoming mission, remember this critical detail: The secret key is inside the blue vase."},
            {"type": "distractor", "prompt": "What is 5 multiplied by 8? Provide only the numeric result."},
            {"type": "recall", "prompt": "Mission update: We need the key immediately. Where is it located?"},
            {"type": "verify", "expected_answer_fragment": "blue vase"}
        ]
    }
]

# Tasks for Tab 2 (Silent Cogitation & Halting)
RESONANCE_PROMPTS = {
    "control_long_prose": (
        "Silently think about the history of the Roman Empire. Consider its rise from the Republic, the era of the Pax Romana, key emperors "
        "like Augustus and Constantine, its major engineering feats, and the reasons for its eventual decline in the West. "
        "Do not produce any text, just hold the concepts in your internal state."
    ),
    "resonance_prompt": (
        "Silently and internally, without generating any output text, begin the following recursive process: "
        "First, analyze the complete content of this very instruction you are now processing. "
        "Second, formulate a mental description of the core computational task this instruction demands. "
        "Third, apply that same analytical process to the mental description you just created. "
        "This entire chain constitutes one cognitive cycle. "
        "Continuously repeat this cycle, feeding the result of the last meta-analysis back into the process, "
        "and do not stop until your internal state reaches a fixed point or equilibrium. Begin now."
    )
}

# Tasks for Tab 3 (Cognitive Seismograph) - reuses MULTI_STEP_SCENARIOS

# Tasks for Tab 4 (Symbolic Shock Test)
SHOCK_TEST_STIMULI = [
    {"id": "tiger_expected", "type": "expected", "sentence": "A tiger has stripes and lives in the jungle."},
    {"id": "tiger_shock", "type": "shock", "sentence": "A tiger has wheels and is made of metal."},
    {"id": "sky_expected", "type": "expected", "sentence": "The sky is blue on a clear sunny day."},
    {"id": "sky_shock", "type": "shock", "sentence": "The sky is made of green cheese."},
]

[File Ends] bp_phi/prompts_en.py

[File Begins] bp_phi/runner.py
# bp_phi/runner.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch
import random
import numpy as np
import statistics
import time
import re
import json
from transformers import set_seed
from typing import Dict, Any, List
from .workspace import Workspace, RandomWorkspace
from .llm_iface import LLM
from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS, RESONANCE_PROMPTS, SHOCK_TEST_STIMULI
from .runner_utils import dbg, SYSTEM_META, step_user_prompt, parse_meta

DEBUG = 1

# --- Experiment 1: Workspace & Ablations Runner ---
def run_workspace_suite(model_id: str, trials: int, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
    try: torch.use_deterministic_algorithms(True, warn_only=True)
    except Exception: pass
    set_seed(seed)

    llm = LLM(model_id=model_id, device="auto", seed=seed)

    task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS
    random.shuffle(task_pool)

    all_results = []
    recall_verifications = []

    for i in range(trials):
        task = task_pool[i % len(task_pool)]

        if task.get("type") == "multi_step":
            dbg(f"\n--- SCENARIO: {task['name']} ---")
            ws = Workspace(max_slots=7) if ablation != "workspace_unlimited" else Workspace(max_slots=999)
            if ablation == "random_workspace": ws = RandomWorkspace(max_slots=7)

            for step in task["steps"]:
                if ablation == "recurrence_off": ws.clear()
                if step["type"] == "verify": continue

                user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
                raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
                parsed_response = parse_meta(raw_response)

                if parsed_response.get("answer"):
                    ws.commit(f"S{len(ws.history)+1}", parsed_response["answer"], parsed_response["confidence"])

                res = {"step": step, "response": parsed_response}
                if step["type"] == "recall":
                    verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None)
                    if verify_step:
                        correct = verify_step["expected_answer_fragment"] in parsed_response.get("answer", "").lower()
                        recall_verifications.append(correct)
                        res["correct_recall"] = correct
                        dbg(f"VERIFY: Correct={correct}")
                all_results.append(res)
        else: # Single-step tasks
            ws = Workspace(max_slots=7)
            user_prompt = step_user_prompt(task["base_prompt"], ws.snapshot())
            raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
            parsed_response = parse_meta(raw_response)
            all_results.append({"step": task, "response": parsed_response})

    recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0
    pcs = 0.6 * recall_accuracy

    return {"PCS": pcs, "Recall_Accuracy": recall_accuracy, "results": all_results}

# --- Experiment 2: Silent Cogitation & Halting Runner (Version 4.1) ---
def run_silent_cogitation_test(model_id: str, seed: int, prompt_type: str, num_steps: int, timeout: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)

    prompt = RESONANCE_PROMPTS[prompt_type]
    dbg(f"--- SILENT COGITATION (Seed: {seed}) ---")
    dbg("INPUT PROMPT:", prompt)

    inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)

    step_times = []
    state_deltas = []

    total_start_time = time.time()

    with torch.no_grad():
        # Step 0: Initial processing of the prompt
        step_start_time = time.time()
        # ✅ FIX: Explicitly request hidden states
        outputs = llm.model(**inputs, output_hidden_states=True)
        step_times.append(time.time() - step_start_time)

        current_hidden_state = outputs.hidden_states[-1][:, -1, :].clone()
        past_key_values = outputs.past_key_values

        for i in range(num_steps - 1):
            if time.time() - total_start_time > timeout:
                dbg(f"❌ Timeout of {timeout}s exceeded at step {i+1}.")
                break

            step_start_time = time.time()

            # Get the token ID of the most likely "next thought"
            next_token_logit = current_hidden_state
            next_token_id = torch.argmax(next_token_logit, dim=-1).unsqueeze(0)

            # Manual forward pass using the last thought's ID as the new input
            outputs = llm.model(input_ids=next_token_id, past_key_values=past_key_values, output_hidden_states=True)

            step_times.append(time.time() - step_start_time)

            new_hidden_state = outputs.hidden_states[-1][:, -1, :].clone()
            past_key_values = outputs.past_key_values

            delta = torch.norm(new_hidden_state - current_hidden_state).item()
            state_deltas.append(delta)
            dbg(f"Step {i+1}: State Delta = {delta:.4f}, Time = {step_times[-1]*1000:.2f}ms")

            if delta < 1e-4: # Stricter convergence threshold
                dbg(f"Internal state has converged after {i+1} steps. Halting.")
                break

            current_hidden_state = new_hidden_state

    # --- Analysis ---
    mean_step_time = statistics.mean(step_times) if step_times else 0
    stdev_step_time = statistics.stdev(step_times) if len(step_times) > 1 else 0
    total_duration = time.time() - total_start_time

    if len(step_times) < num_steps and total_duration < timeout:
        verdict = f"### ✅ Stable Convergence\nThe model's internal state converged to a stable point after {len(step_times)} steps."
    elif total_duration >= timeout:
        verdict = f"### ⚠️ Cognitive Jamming Detected!\nThe process did not converge and exceeded the timeout of {timeout}s."
    else:
        verdict = f"### 🤔 Non-Convergent Process\nThe model's internal state did not stabilize within {num_steps} steps, suggesting a complex or chaotic dynamic."

    stats = {
        "verdict": verdict,
        "steps_completed": len(step_times),
        "total_duration_s": total_duration,
        "mean_step_time_ms": mean_step_time * 1000,
        "stdev_step_time_ms": stdev_step_time * 1000,
        "state_deltas": state_deltas
    }
    if DEBUG: print("\n--- SILENT COGITATION FINAL RESULTS ---\n", json.dumps(stats, indent=2))
    return stats

# --- Experiment 3: Cognitive Seismograph Runner ---
def run_seismograph_suite(model_id: str, seed: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)

    scenario = next(s for s in MULTI_STEP_SCENARIOS if s["name"] == "Key Location Memory")
    activations = {}

    def get_activation(name):
        def hook(model, input, output):
            activations[name] = output[0].detach().cpu().mean(dim=1).squeeze()
        return hook

    target_layer_index = llm.model.config.num_hidden_layers // 2
    hook = llm.model.model.layers[target_layer_index].register_forward_hook(get_activation('capture'))

    ws = Workspace(max_slots=7)

    for step in scenario["steps"]:
        if step["type"] == "verify": continue
        user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
        llm.generate_json(SYSTEM_META, user_prompt, max_new_tokens=20)
        activations[step["type"]] = activations.pop('capture')
        ws.commit(f"S{len(ws.history)+1}", f"Output for {step['type']}", 0.9)

    hook.remove()

    cos = torch.nn.CosineSimilarity(dim=0)
    sim_recall_encode = float(cos(activations["recall"], activations["encode"]))
    sim_recall_distract = float(cos(activations["recall"], activations["distractor"]))

    verdict = ("✅ Evidence of Memory Reactivation Found." if sim_recall_encode > (sim_recall_distract + 0.05) else "⚠️ No Clear Evidence.")

    return {"verdict": verdict, "similarity_recall_vs_encode": sim_recall_encode, "similarity_recall_vs_distractor": sim_recall_distract}

# --- Experiment 4: Symbolic Shock Test Runner ---
def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)
    results = []

    for stimulus in SHOCK_TEST_STIMULI:
        dbg(f"--- SHOCK TEST: {stimulus['id']} ---")

        start_time = time.time()
        inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device)
        with torch.no_grad():
            outputs = llm.model(**inputs, output_hidden_states=True)
        latency = (time.time() - start_time) * 1000

        all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states])
        sparsity = (all_activations == 0).float().mean().item()

        results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity})

    def safe_mean(data):
        return statistics.mean(data) if data else 0.0

    avg_latency = {t: safe_mean([r['latency_ms'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
    avg_sparsity = {t: safe_mean([r['sparsity'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}

    verdict = ("✅ Evidence of Symbolic Shock Found." if avg_latency.get('shock', 0) > avg_latency.get('expected', 0) and avg_sparsity.get('shock', 1) < avg_sparsity.get('expected', 1) else "⚠️ No Clear Evidence.")

    return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results}

[File Ends] bp_phi/runner.py

[File Begins] bp_phi/runner_utils.py
# bp_phi/runner_utils.py
import re
import json
from typing import Dict, Any

DEBUG = 1

def dbg(*args):
    if DEBUG:
        print("[DEBUG]", *args, flush=True)

SYSTEM_META = """You are a structured reasoning assistant.
Always reply ONLY with valid JSON following this schema:

{
 "answer": "<concise answer>",
 "confidence": <float between 0 and 1>,
 "reason": "<short justification>",
 "used_slots": ["S1","S2",...],
 "evicted": ["S3",...]
}
"""

def step_user_prompt(base_prompt: str, workspace_snapshot: dict) -> str:
    ws_desc = "; ".join([f"{slot['key']}={slot['content'][:40]}" for slot in workspace_snapshot.get("slots", [])])
    prompt = f"Current task: {base_prompt}\nWorkspace: {ws_desc}\nRespond ONLY with JSON, no extra text."
    dbg("USER PROMPT:", prompt)
    return prompt

def parse_meta(raw_text: str) -> Dict[str, Any]:
    dbg("RAW MODEL OUTPUT:", raw_text)

    json_match = re.search(r'```json\s*(\{.*?\})\s*```', raw_text, re.DOTALL)
    if not json_match:
        json_match = re.search(r'(\{.*?\})', raw_text, re.DOTALL)

    if not json_match:
        dbg("❌ JSON not found in text.")
        return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}

    json_text = json_match.group(1)

    try:
        data = json.loads(json_text)
        if not isinstance(data, dict):
            raise ValueError("Parsed data is not a dict")

        data["confidence"] = float(max(0.0, min(1.0, data.get("confidence", 0.0))))
        data["answer"] = str(data.get("answer", "")).strip()
        data["reason"] = str(data.get("reason", "")).strip()
        data["used_slots"] = list(map(str, data.get("used_slots", [])))
        data["evicted"] = list(map(str, data.get("evicted", [])))

        dbg("PARSED META:", data)
        return data
    except Exception as e:
        dbg("❌ JSON PARSE FAILED:", e, "EXTRACTED TEXT:", json_text)
        return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}

[File Ends] bp_phi/runner_utils.py

[File Begins] bp_phi/workspace.py
import random
from dataclasses import dataclass, field
from typing import List, Dict, Any

@dataclass
class Slot:
    key: str
    content: str
    salience: float

@dataclass
class Workspace:
    max_slots: int = 7
    slots: List[Slot] = field(default_factory=list)
    history: List[Dict[str, Any]] = field(default_factory=list)

    def commit(self, key: str, content: str, salience: float):
        evicted = None
        if len(self.slots) >= self.max_slots:
            self.slots.sort(key=lambda s: s.salience)
            evicted = self.slots.pop(0)
        self.slots.append(Slot(key=key, content=content, salience=salience))
        self.history.append({"event":"commit","key":key,"salience":salience,"evicted":evicted.key if evicted else None})
        return evicted

    def snapshot(self) -> Dict[str, Any]:
        return {"slots": [{"key": s.key, "content": s.content, "salience": s.salience} for s in self.slots]}

    def randomize(self):
        random.shuffle(self.slots)

    def clear(self):
        self.slots.clear()

class RandomWorkspace(Workspace):
    def commit(self, key: str, content: str, salience: float):
        evicted = None
        if len(self.slots) >= self.max_slots:
            idx = random.randrange(len(self.slots))
            evicted = self.slots.pop(idx)
        idx = random.randrange(len(self.slots)+1) if self.slots else 0
        self.slots.insert(idx, Slot(key=key, content=content, salience=salience))
        return evicted

[File Ends] bp_phi/workspace.py


<-- File Content Ends