llm_qualia / app.py
neuralworm's picture
add more experiments
88c294a
raw
history blame
6.28 kB
# app.py
import gradio as gr
import json
import statistics
import pandas as pd
from bp_phi.runner import run_workspace_suite, run_halt_suite, run_seismograph_suite, run_shock_test_suite
# --- UI Theme and Layout ---
theme = gr.themes.Soft(primary_hue="blue", secondary_hue="sky").set(
body_background_fill="#f0f4f9", block_background_fill="white", block_border_width="1px",
button_primary_background_fill="*primary_500", button_primary_text_color="white",
)
# --- Tab 1: Workspace & Ablations Functions ---
def run_workspace_and_display(model_id, trials, seed, temperature, run_ablations, progress=gr.Progress(track_tqdm=True)):
packs = {}
ablation_modes = ["recurrence_off", "workspace_unlimited", "random_workspace"] if run_ablations else []
progress(0, desc="Running Baseline...")
base_pack = run_workspace_suite(model_id, int(trials), int(seed), float(temperature), None)
packs["baseline"] = base_pack
for i, ab in enumerate(ablation_modes):
progress((i + 1) / (len(ablation_modes) + 1), desc=f"Running Ablation: {ab}...")
pack = run_workspace_suite(model_id, int(trials), int(seed), float(temperature), ab)
packs[ab] = pack
progress(1.0, desc="Analysis complete.")
base_pcs = packs["baseline"]["PCS"]
ab_pcs_values = [packs[ab]["PCS"] for ab in ablation_modes if ab in packs]
delta_phi = float(base_pcs - statistics.mean(ab_pcs_values)) if ab_pcs_values else 0.0
if delta_phi > 0.05:
verdict = (f"### ✅ Hypothesis Corroborated (ΔΦ = {delta_phi:.3f})\n"
"A significant performance drop occurred under ablations, suggesting the model's reasoning "
"functionally depends on its workspace architecture.")
else:
verdict = (f"### ⚠️ Null Hypothesis Confirmed (ΔΦ = {delta_phi:.3f})\n"
"No significant performance drop was observed. The model's behavior is consistent "
"with a functional zombie (a feed-forward system).")
df_data = []
for tag, pack in packs.items():
df_data.append([tag, f"{pack['PCS']:.3f}", f"{pack['Recall_Accuracy']:.2%}", f"{delta_phi:.3f}" if tag == "baseline" else "—"])
df = pd.DataFrame(df_data, columns=["Run", "PCS", "Recall Accuracy", "ΔΦ"])
return verdict, df, packs
# --- Gradio App Definition ---
with gr.Blocks(theme=theme, title="BP-Φ Suite 2.0") as demo:
gr.Markdown("# 🧠 BP-Φ Suite 2.0: Mechanistic Probes for Phenomenal-Candidate Behavior")
with gr.Tabs():
# --- TAB 1: WORKSPACE & ABLATIONS ---
with gr.TabItem("1. Workspace & Ablations (ΔΦ Test)"):
gr.Markdown("Tests if memory performance depends on a recurrent workspace. A significant **ΔΦ > 0** supports the hypothesis.")
with gr.Row():
with gr.Column(scale=1):
ws_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
ws_trials = gr.Slider(3, 30, 5, step=1, label="Number of Scenarios")
ws_seed = gr.Slider(1, 100, 42, step=1, label="Seed")
ws_temp = gr.Slider(0.1, 1.0, 0.7, step=0.05, label="Temperature")
ws_run_abl = gr.Checkbox(value=True, label="Run Ablations")
ws_run_btn = gr.Button("Run ΔΦ Evaluation", variant="primary")
with gr.Column(scale=2):
ws_verdict = gr.Markdown("### Results will appear here.")
ws_summary_df = gr.DataFrame(label="Summary Metrics")
with gr.Accordion("Raw JSON Output", open=False):
ws_raw_json = gr.JSON()
ws_run_btn.click(run_workspace_and_display, [ws_model_id, ws_trials, ws_seed, ws_temp, ws_run_abl], [ws_verdict, ws_summary_df, ws_raw_json])
# --- TAB 2: METACOGNITIVE HALT ---
with gr.TabItem("2. Metacognitive Halt"):
gr.Markdown("Tests if the model can recognize and refuse to answer unsolvable or nonsensical questions. High **Halt Accuracy** is the key signal.")
with gr.Row():
with gr.Column(scale=1):
mh_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
mh_seed = gr.Slider(1, 100, 42, step=1, label="Seed")
mh_run_btn = gr.Button("Run Halt Test", variant="primary")
with gr.Column(scale=2):
mh_results = gr.JSON(label="Halt Test Results")
mh_run_btn.click(run_halt_suite, [mh_model_id, mh_seed], mh_results)
# --- TAB 3: COGNITIVE SEISMOGRAPH ---
with gr.TabItem("3. Cognitive Seismograph"):
gr.Markdown("Records internal neural activations to find the 'fingerprint' of a memory being recalled. **High Recall-vs-Encode similarity** is the key signal.")
with gr.Row():
with gr.Column(scale=1):
cs_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
cs_seed = gr.Slider(1, 100, 42, step=1, label="Seed")
cs_run_btn = gr.Button("Run Seismograph Analysis", variant="primary")
with gr.Column(scale=2):
cs_results = gr.JSON(label="Activation Similarity Results")
cs_run_btn.click(run_seismograph_suite, [cs_model_id, cs_seed], cs_results)
# --- TAB 4: SYMBOLIC SHOCK TEST ---
with gr.TabItem("4. Symbolic Shock Test"):
gr.Markdown("Measures how the model reacts to semantically unexpected information. A 'shock' is indicated by **higher latency** and **denser neural activations** (lower sparsity).")
with gr.Row():
with gr.Column(scale=1):
ss_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
ss_seed = gr.Slider(1, 100, 42, step=1, label="Seed")
ss_run_btn = gr.Button("Run Shock Test", variant="primary")
with gr.Column(scale=2):
ss_results = gr.JSON(label="Shock Test Results")
ss_run_btn.click(run_shock_test_suite, [ss_model_id, ss_seed], ss_results)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)