llm_qualia / bp_phi /llm_iface.py
neuralworm's picture
add debug
7f0c9e6
raw
history blame
3.2 kB
# bp_phi/llm_iface.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch, random, numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from typing import List, Optional
DEBUG = os.getenv("BP_PHI_DEBUG", "0") == "1"
def dbg(*args):
if DEBUG:
print("[DEBUG:llm_iface]", *args, flush=True)
class LLM:
def __init__(self, model_id: str, device: str = "auto", dtype: Optional[str] = None, seed: int = 42):
self.model_id = model_id
self.seed = seed
# Set all seeds for reproducibility
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
try:
torch.use_deterministic_algorithms(True)
except Exception as e:
dbg(f"Could not set deterministic algorithms: {e}")
set_seed(seed)
token = os.environ.get("HF_TOKEN")
if not token and "gemma-3" in model_id:
print("[WARN] No HF_TOKEN set. If the model is gated (like google/gemma-3-1b-it), this will fail.")
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
kwargs = {}
if dtype == "float16": kwargs["torch_dtype"] = torch.float16
elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
self.model.eval()
self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template
dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}")
def generate_json(self, system_prompt: str, user_prompt: str,
max_new_tokens: int = 256, temperature: float = 0.7,
top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]:
set_seed(self.seed) # Re-seed for each call for full determinism
if self.is_instruction_tuned:
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
else:
prompt = f"{system_prompt}\n\nUser:\n{user_prompt}\n\nAssistant:\n"
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
input_token_length = inputs.input_ids.shape[1]
with torch.no_grad():
out = self.model.generate(
**inputs,
do_sample=(temperature > 0),
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
num_return_sequences=num_return_sequences,
pad_token_id=self.tokenizer.eos_token_id
)
# ✅ Decode ONLY the newly generated tokens, not the prompt
new_tokens = out[:, input_token_length:]
completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
dbg("Cleaned model completions:", completions)
return completions