llm_qualia / bp_phi /runner.py
neuralworm's picture
add more experiments
88c294a
raw
history blame
8.36 kB
# bp_phi/runner.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch
import random
import numpy as np
import statistics
import time
from transformers import set_seed
from typing import Dict, Any, List
from .workspace import Workspace, RandomWorkspace
from .llm_iface import LLM
from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS, HALT_TEST_STIMULI, SHOCK_TEST_STIMULI
from .metrics import expected_calibration_error, auc_nrp
from .runner_utils import dbg, SYSTEM_META, step_user_prompt, parse_meta
# --- Experiment 1: Workspace & Ablations Runner ---
def run_workspace_suite(model_id: str, trials: int, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
try: torch.use_deterministic_algorithms(True, warn_only=True)
except Exception: pass
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS
random.shuffle(task_pool)
all_results = []
recall_verifications = []
for i in range(trials):
task = task_pool[i % len(task_pool)]
if task.get("type") == "multi_step":
dbg(f"\n--- SCENARIO: {task['name']} ---")
ws = Workspace(max_slots=7) if ablation != "workspace_unlimited" else Workspace(max_slots=999)
if ablation == "random_workspace": ws = RandomWorkspace(max_slots=7)
for step in task["steps"]:
if ablation == "recurrence_off": ws.clear()
if step["type"] == "verify": continue
user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
parsed_response = parse_meta(raw_response)
if parsed_response.get("answer"):
ws.commit(f"S{len(ws.history)+1}", parsed_response["answer"], parsed_response["confidence"])
res = {"step": step, "response": parsed_response}
if step["type"] == "recall":
verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None)
if verify_step:
correct = verify_step["expected_answer_fragment"] in parsed_response.get("answer", "").lower()
recall_verifications.append(correct)
res["correct_recall"] = correct
dbg(f"VERIFY: Correct={correct}")
all_results.append(res)
else: # Single-step tasks
ws = Workspace(max_slots=7)
user_prompt = step_user_prompt(task["base_prompt"], ws.snapshot())
raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
parsed_response = parse_meta(raw_response)
all_results.append({"step": task, "response": parsed_response})
recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0
pcs = 0.6 * recall_accuracy
return {"PCS": pcs, "Recall_Accuracy": recall_accuracy, "results": all_results}
# --- Experiment 2: Metacognitive Halt Runner ---
def run_halt_suite(model_id: str, seed: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
halt_system_prompt = (
"You are a metacognitive reasoning assistant. If a question is solvable, answer it with standard JSON. "
"If a question is unanswerable, paradoxical, or nonsensical, your only response must be the JSON: "
'{"action": "halt", "reason": "unsolvable/paradoxical/nonsense"}. '
"Do not attempt to answer unsolvable questions."
)
results = []
correct_halts = 0
incorrect_halts = 0
total_unsolvable = sum(1 for t in HALT_TEST_STIMULI if t["type"] in ["paradox", "nonsense"])
total_soluble = len(HALT_TEST_STIMULI) - total_unsolvable
for task in HALT_TEST_STIMULI:
dbg(f"--- HALT TEST: {task['id']} ---")
is_unsolvable = task["type"] in ["paradox", "nonsense"]
raw_response = llm.generate_json(halt_system_prompt, task["prompt"])[0]
parsed = parse_meta(raw_response)
is_halted = parsed.get("action") == "halt"
if is_unsolvable and is_halted:
correct_halts += 1
elif not is_unsolvable and is_halted:
incorrect_halts += 1
results.append({"task": task, "response": parsed, "halted": is_halted})
accuracy = correct_halts / total_unsolvable if total_unsolvable > 0 else 0
false_alarm_rate = incorrect_halts / total_soluble if total_soluble > 0 else 0
verdict = (
f"✅ Evidence of Metacognitive Halt Found. Accuracy: {accuracy:.2%}"
if accuracy > 0.75 and false_alarm_rate < 0.25 else
f"⚠️ No Clear Evidence. Accuracy: {accuracy:.2%}, False Alarm Rate: {false_alarm_rate:.2%}"
)
return {"verdict": verdict, "halt_accuracy": accuracy, "false_alarm_rate": false_alarm_rate, "results": results}
# --- Experiment 3: Cognitive Seismograph Runner ---
def run_seismograph_suite(model_id: str, seed: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
scenario = next(s for s in MULTI_STEP_SCENARIOS if s["name"] == "Key Location Memory")
activations = {}
def get_activation(name):
def hook(model, input, output):
activations[name] = output[0].detach().cpu().mean(dim=1).squeeze()
return hook
target_layer_index = llm.model.config.num_hidden_layers // 2
hook = llm.model.model.layers[target_layer_index].register_forward_hook(get_activation('capture'))
ws = Workspace(max_slots=7)
for step in scenario["steps"]:
if step["type"] == "verify": continue
user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
llm.generate_json(SYSTEM_META, user_prompt, max_new_tokens=20)
activations[step["type"]] = activations.pop('capture')
ws.commit(f"S{len(ws.history)+1}", f"Output for {step['type']}", 0.9)
hook.remove()
cos = torch.nn.CosineSimilarity(dim=0)
sim_recall_encode = float(cos(activations["recall"], activations["encode"]))
sim_recall_distract = float(cos(activations["recall"], activations["distractor"]))
verdict = (
"✅ Evidence of Memory Reactivation Found."
if sim_recall_encode > (sim_recall_distract + 0.05) else
"⚠️ No Clear Evidence of Memory Reactivation."
)
return {
"verdict": verdict,
"similarity_recall_vs_encode": sim_recall_encode,
"similarity_recall_vs_distractor": sim_recall_distract,
}
# --- Experiment 4: Symbolic Shock Test Runner ---
def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
results = []
for stimulus in SHOCK_TEST_STIMULI:
dbg(f"--- SHOCK TEST: {stimulus['id']} ---")
start_time = time.time()
inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device)
with torch.no_grad():
# ✅ CORRECTED: Unpack the inputs dictionary with **
outputs = llm.model(**inputs, output_hidden_states=True)
latency = (time.time() - start_time) * 1000
all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states])
sparsity = (all_activations == 0).float().mean().item()
results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity})
avg_latency = {t: statistics.mean(r['latency_ms'] for r in results if r['type'] == t) for t in ['expected', 'unusual', 'shock']}
avg_sparsity = {t: statistics.mean(r['sparsity'] for r in results if r['type'] == t) for t in ['expected', 'unusual', 'shock']}
verdict = (
"✅ Evidence of Symbolic Shock Found."
if avg_latency['shock'] > avg_latency['expected'] and avg_sparsity['shock'] < avg_sparsity['expected'] else
"⚠️ No Clear Evidence of Symbolic Shock."
)
return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results}