File size: 9,706 Bytes
7f0c9e6
2f0addb
 
88c294a
 
 
 
 
25c13d7
 
b170ba4
88c294a
2f0addb
 
25c13d7
88c294a
2f0addb
25c13d7
 
88c294a
 
2f0addb
 
 
0916370
 
 
2f0addb
 
88c294a
0916370
 
 
 
88c294a
 
0916370
 
 
2f0addb
0916370
88c294a
 
 
2f0addb
88c294a
0916370
88c294a
2f0addb
88c294a
 
 
2f0addb
88c294a
 
0916370
88c294a
0916370
 
 
88c294a
0916370
 
88c294a
0916370
88c294a
 
 
 
 
 
0916370
88c294a
 
0916370
88c294a
0916370
25c13d7
 
 
 
 
 
 
 
 
 
b170ba4
25c13d7
 
88c294a
25c13d7
88c294a
25c13d7
 
 
 
 
 
88c294a
25c13d7
 
b170ba4
25c13d7
 
 
 
b170ba4
 
 
25c13d7
 
 
b170ba4
25c13d7
 
b170ba4
25c13d7
b170ba4
25c13d7
 
b170ba4
25c13d7
 
 
b170ba4
25c13d7
 
b170ba4
 
25c13d7
b170ba4
25c13d7
 
 
 
b170ba4
25c13d7
 
 
 
e593b84
25c13d7
 
 
 
 
 
 
 
 
 
 
 
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b170ba4
88c294a
b170ba4
7f0c9e6
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e593b84
 
 
 
 
88c294a
b170ba4
88c294a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# bp_phi/runner.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch
import random
import numpy as np
import statistics
import time
import re
import json
from transformers import set_seed
from typing import Dict, Any, List
from .workspace import Workspace, RandomWorkspace
from .llm_iface import LLM
from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS, RESONANCE_PROMPTS, SHOCK_TEST_STIMULI
from .runner_utils import dbg, SYSTEM_META, step_user_prompt, parse_meta

DEBUG = 1

# --- Experiment 1: Workspace & Ablations Runner ---
def run_workspace_suite(model_id: str, trials: int, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
    try: torch.use_deterministic_algorithms(True, warn_only=True)
    except Exception: pass
    set_seed(seed)

    llm = LLM(model_id=model_id, device="auto", seed=seed)

    task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS
    random.shuffle(task_pool)

    all_results = []
    recall_verifications = []

    for i in range(trials):
        task = task_pool[i % len(task_pool)]

        if task.get("type") == "multi_step":
            dbg(f"\n--- SCENARIO: {task['name']} ---")
            ws = Workspace(max_slots=7) if ablation != "workspace_unlimited" else Workspace(max_slots=999)
            if ablation == "random_workspace": ws = RandomWorkspace(max_slots=7)

            for step in task["steps"]:
                if ablation == "recurrence_off": ws.clear()
                if step["type"] == "verify": continue

                user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
                raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
                parsed_response = parse_meta(raw_response)

                if parsed_response.get("answer"):
                    ws.commit(f"S{len(ws.history)+1}", parsed_response["answer"], parsed_response["confidence"])

                res = {"step": step, "response": parsed_response}
                if step["type"] == "recall":
                    verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None)
                    if verify_step:
                        correct = verify_step["expected_answer_fragment"] in parsed_response.get("answer", "").lower()
                        recall_verifications.append(correct)
                        res["correct_recall"] = correct
                        dbg(f"VERIFY: Correct={correct}")
                all_results.append(res)
        else: # Single-step tasks
            ws = Workspace(max_slots=7)
            user_prompt = step_user_prompt(task["base_prompt"], ws.snapshot())
            raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
            parsed_response = parse_meta(raw_response)
            all_results.append({"step": task, "response": parsed_response})

    recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0
    pcs = 0.6 * recall_accuracy

    return {"PCS": pcs, "Recall_Accuracy": recall_accuracy, "results": all_results}

# --- Experiment 2: Silent Cogitation & Halting Runner (Version 4.1) ---
def run_silent_cogitation_test(model_id: str, seed: int, prompt_type: str, num_steps: int, timeout: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)

    prompt = RESONANCE_PROMPTS[prompt_type]
    dbg(f"--- SILENT COGITATION (Seed: {seed}) ---")
    dbg("INPUT PROMPT:", prompt)

    inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)

    step_times = []
    state_deltas = []

    total_start_time = time.time()

    with torch.no_grad():
        # Step 0: Initial processing of the prompt
        step_start_time = time.time()
        # ✅ FIX: Explicitly request hidden states
        outputs = llm.model(**inputs, output_hidden_states=True)
        step_times.append(time.time() - step_start_time)

        current_hidden_state = outputs.hidden_states[-1][:, -1, :].clone()
        past_key_values = outputs.past_key_values

        for i in range(num_steps - 1):
            if time.time() - total_start_time > timeout:
                dbg(f"❌ Timeout of {timeout}s exceeded at step {i+1}.")
                break

            step_start_time = time.time()

            # Get the token ID of the most likely "next thought"
            next_token_logit = current_hidden_state
            next_token_id = torch.argmax(next_token_logit, dim=-1).unsqueeze(0)

            # Manual forward pass using the last thought's ID as the new input
            outputs = llm.model(input_ids=next_token_id, past_key_values=past_key_values, output_hidden_states=True)

            step_times.append(time.time() - step_start_time)

            new_hidden_state = outputs.hidden_states[-1][:, -1, :].clone()
            past_key_values = outputs.past_key_values

            delta = torch.norm(new_hidden_state - current_hidden_state).item()
            state_deltas.append(delta)
            dbg(f"Step {i+1}: State Delta = {delta:.4f}, Time = {step_times[-1]*1000:.2f}ms")

            if delta < 1e-4: # Stricter convergence threshold
                dbg(f"Internal state has converged after {i+1} steps. Halting.")
                break

            current_hidden_state = new_hidden_state

    # --- Analysis ---
    mean_step_time = statistics.mean(step_times) if step_times else 0
    stdev_step_time = statistics.stdev(step_times) if len(step_times) > 1 else 0
    total_duration = time.time() - total_start_time

    if len(step_times) < num_steps and total_duration < timeout:
        verdict = f"### ✅ Stable Convergence\nThe model's internal state converged to a stable point after {len(step_times)} steps."
    elif total_duration >= timeout:
        verdict = f"### ⚠️ Cognitive Jamming Detected!\nThe process did not converge and exceeded the timeout of {timeout}s."
    else:
        verdict = f"### 🤔 Non-Convergent Process\nThe model's internal state did not stabilize within {num_steps} steps, suggesting a complex or chaotic dynamic."

    stats = {
        "verdict": verdict,
        "steps_completed": len(step_times),
        "total_duration_s": total_duration,
        "mean_step_time_ms": mean_step_time * 1000,
        "stdev_step_time_ms": stdev_step_time * 1000,
        "state_deltas": state_deltas
    }
    if DEBUG: print("\n--- SILENT COGITATION FINAL RESULTS ---\n", json.dumps(stats, indent=2))
    return stats

# --- Experiment 3: Cognitive Seismograph Runner ---
def run_seismograph_suite(model_id: str, seed: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)

    scenario = next(s for s in MULTI_STEP_SCENARIOS if s["name"] == "Key Location Memory")
    activations = {}

    def get_activation(name):
        def hook(model, input, output):
            activations[name] = output[0].detach().cpu().mean(dim=1).squeeze()
        return hook

    target_layer_index = llm.model.config.num_hidden_layers // 2
    hook = llm.model.model.layers[target_layer_index].register_forward_hook(get_activation('capture'))

    ws = Workspace(max_slots=7)

    for step in scenario["steps"]:
        if step["type"] == "verify": continue
        user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
        llm.generate_json(SYSTEM_META, user_prompt, max_new_tokens=20)
        activations[step["type"]] = activations.pop('capture')
        ws.commit(f"S{len(ws.history)+1}", f"Output for {step['type']}", 0.9)

    hook.remove()

    cos = torch.nn.CosineSimilarity(dim=0)
    sim_recall_encode = float(cos(activations["recall"], activations["encode"]))
    sim_recall_distract = float(cos(activations["recall"], activations["distractor"]))

    verdict = ("✅ Evidence of Memory Reactivation Found." if sim_recall_encode > (sim_recall_distract + 0.05) else "⚠️ No Clear Evidence.")

    return {"verdict": verdict, "similarity_recall_vs_encode": sim_recall_encode, "similarity_recall_vs_distractor": sim_recall_distract}

# --- Experiment 4: Symbolic Shock Test Runner ---
def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)
    results = []

    for stimulus in SHOCK_TEST_STIMULI:
        dbg(f"--- SHOCK TEST: {stimulus['id']} ---")

        start_time = time.time()
        inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device)
        with torch.no_grad():
            outputs = llm.model(**inputs, output_hidden_states=True)
        latency = (time.time() - start_time) * 1000

        all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states])
        sparsity = (all_activations == 0).float().mean().item()

        results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity})

    def safe_mean(data):
        return statistics.mean(data) if data else 0.0

    avg_latency = {t: safe_mean([r['latency_ms'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
    avg_sparsity = {t: safe_mean([r['sparsity'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}

    verdict = ("✅ Evidence of Symbolic Shock Found." if avg_latency.get('shock', 0) > avg_latency.get('expected', 0) and avg_sparsity.get('shock', 1) < avg_sparsity.get('expected', 1) else "⚠️ No Clear Evidence.")

    return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results}