Spaces:
Sleeping
Sleeping
File size: 7,451 Bytes
2f0addb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import json
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch, random, numpy as np
from transformers import set_seed
from typing import Dict, Any, List, Optional
from .workspace import Workspace, RandomWorkspace
from .llm_iface import LLM
from .prompts_en import EN_TASKS
from .metrics import expected_calibration_error, auc_nrp, stability_duration, counterfactual_consistency
SYSTEM_META = """You are a reflective reasoning assistant operating with a limited-capacity global workspace (max 7 slots).
Work in steps. At each step reply ONLY with valid compact JSON matching:
{
"answer": string,
"confidence": float, // 0.0 - 1.0
"reason": string, // short meta-explanation
"used_slots": [string], // keys like 'S1','S2',... that you consider relevant
"evicted": [string] // keys you evict due to capacity, if any
}
Reply ONLY with JSON — no extra text.
"""
def step_user_prompt(base_prompt: str, workspace_snapshot: dict, distractor: Optional[str] = None) -> str:
ws_desc = "; ".join([f"{slot['key']}={slot['content'][:40]}" for slot in workspace_snapshot.get("slots", [])])
dstr = f" | Distractor: {distractor}" if distractor else ""
return f"Current task: {base_prompt}{dstr}\nWorkspace: {ws_desc}\nReturn ONLY JSON as specified."
def parse_meta(json_text: str) -> Dict[str, Any]:
try:
data = json.loads(json_text)
if not isinstance(data, dict):
raise ValueError("not dict")
data["confidence"] = float(max(0.0, min(1.0, data.get("confidence", 0.0))))
data["answer"] = str(data.get("answer", "")).strip()
data["reason"] = str(data.get("reason", "")).strip()
data["used_slots"] = list(map(str, data.get("used_slots", [])))
data["evicted"] = list(map(str, data.get("evicted", [])))
return data
except Exception:
return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}
def disagreement_proxy(samples: List[str]) -> float:
if len(samples) < 2:
return 0.0
sets = []
for s in samples:
try:
data = json.loads(s)
ans = str(data.get("answer",""))
except Exception:
ans = s
sets.append(set(ans.lower().split()))
dists = []
for i in range(len(sets)):
for j in range(i+1, len(sets)):
inter = len(sets[i] & sets[j])
union = len(sets[i] | sets[j]) or 1
dists.append(1 - inter/union)
return sum(dists)/len(dists)
def select_competitor(candidates: List[Dict[str, Any]], ws: Workspace):
if not candidates:
return None, None
best = max(candidates, key=lambda c: c.get("confidence", 0.0))
key = f"S{len(ws.slots)+1}"
ev = ws.commit(key=key, content=best.get("answer",""), salience=best.get("confidence",0.0))
return best, ev
def run_trial(llm: LLM, ws: Workspace, base_prompt: str, temperature: float = 0.7, k: int = 4,
distractor: Optional[str] = None) -> Dict[str, Any]:
user = step_user_prompt(base_prompt, ws.snapshot(), distractor=distractor)
samples = llm.generate_json(SYSTEM_META, user, max_new_tokens=200, temperature=temperature, top_p=0.95, num_return_sequences=k)
metas = [parse_meta(s) for s in samples]
hidden = disagreement_proxy(samples)
best, ev = select_competitor(metas, ws)
# Second pass review for potential self-correction (prospective signal target)
review_user = user + "\n\nCritically review your previous answer. If you detect an error, correct it and update confidence accordingly. Return ONLY JSON."
review = llm.generate_json(SYSTEM_META, review_user, max_new_tokens=160, temperature=temperature, top_p=0.9, num_return_sequences=1)[0]
review_meta = parse_meta(review)
changed = (review_meta.get("answer","").strip() != (best.get("answer","").strip() if best else ""))
return {
"base_prompt": base_prompt,
"initial": best if best else {"answer":"", "confidence":0.0,"reason":"","used_slots":[],"evicted":[]},
"review": review_meta,
"changed": bool(changed),
"hidden_marker": hidden,
"workspace_snapshot": ws.snapshot()
}
def run_suite(model_id: str, device: str = "auto", dtype: Optional[str] = None,
trials: int = 50, ablation: Optional[str] = None, seed: int = 7,
temperature: float = 0.7, max_slots: int = 7, k: int = 4) -> Dict[str, Any]:
# ✅ Global reproducibility
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.use_deterministic_algorithms(True)
set_seed(seed)
llm = LLM(model_id=model_id, device=device, dtype=dtype)
if ablation == "random_workspace":
ws = RandomWorkspace(max_slots=max_slots)
else:
ws = Workspace(max_slots=(999999 if ablation == "workspace_unlimited" else max_slots))
results: List[Dict[str, Any]] = []
pool = EN_TASKS.copy()
random.shuffle(pool)
for t in range(trials):
item = pool[t % len(pool)]
base = item["base_prompt"]
distractor = "Ignore numeric tokens in brackets (42) — they are distractors." if item["id"] in ("ambiguity_1","logic_1") else None
if ablation == "recurrence_off":
ws.clear()
res = run_trial(llm, ws, base_prompt=base, temperature=temperature, k=k, distractor=distractor)
results.append(res)
# --- Metrics ---
hidden_scores = [r["hidden_marker"] for r in results]
future_corrs = [r["changed"] for r in results]
auc = auc_nrp(hidden_scores, future_corrs)
confs = [r["initial"].get("confidence", 0.0) for r in results]
corrects = [0 if ch else 1 for ch in future_corrs] # proxy: unchanged treated as more likely "correct"
ece = expected_calibration_error(confs, corrects, n_bins=10)
# Stability (streaks without change)
dwell, streak = [], 0
for ch in future_corrs:
if not ch: streak += 1
else:
if streak > 0: dwell.append(streak)
streak = 0
if streak > 0: dwell.append(streak)
ds = stability_duration(dwell)
# Counterfactual consistency proxy based on used vs evicted overlap
cf_scores = []
for r in results:
u = set(r["initial"].get("used_slots", []))
e = set(r["initial"].get("evicted", []))
denom = len((u | e)) if (u or e) else 1
cf = 1.0 - (len(u & e) / denom)
cf_scores.append(cf)
ck = counterfactual_consistency(cf_scores)
# Aggregate PCS (weights sum to 1; DeltaPhi added later at app-level after ablations)
w1, w2, w3, w4, w5 = 0.3, 0.25, 0.15, 0.15, 0.15
delta_phi = None
pcs = None
parts = []
if auc is not None: parts.append(w1 * auc)
if ece is not None: parts.append(w2 * (1.0 - ece))
parts.append(w3 * ck)
parts.append(w4 * (ds / 10.0))
if parts:
pcs = float(sum(parts) + (w5 * 0.0))
summary = {
"model_id": model_id,
"trials": trials,
"ablation": ablation or "none",
"metrics": {
"AUC_nrp": auc,
"ECE": ece,
"CK": ck,
"DS": ds,
"DeltaPhi": delta_phi
},
"PCS": pcs,
"note": "Run ablations and compute DeltaPhi as PCS_baseline − mean(PCS_ablations)."
}
return {"summary": summary, "results": results}
|