Spaces:
Sleeping
Sleeping
File size: 21,805 Bytes
b87f0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
Repository Documentation
This document provides a comprehensive overview of the repository's structure and contents.
The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format.
In this section, directories and files are listed using tree branches to indicate their structure and relationships.
Following the tree representation, the 'File Content' section details the contents of each file in the repository.
Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path,
and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker.
This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository.
Directory/File Tree Begins -->
/
├── README.md
├── app.py
├── bp_phi
│ ├── __init__.py
│ ├── __pycache__
│ ├── llm_iface.py
│ ├── metrics.py
│ ├── prompts_en.py
│ ├── runner.py
│ └── workspace.py
<-- Directory/File Tree Ends
File Content Begin -->
[File Begins] README.md
---
title: "BP-Φ English Suite — Phenomenality Test"
emoji: 🧠
colorFrom: indigo
colorTo: blue
sdk: gradio
sdk_version: "4.40.0"
app_file: app.py
pinned: true
license: apache-2.0
---
# BP-Φ English Suite — Phenomenality Test (Hugging Face Spaces)
This Space implements a falsifiable **BP-Φ** probe for LLMs:
> Phenomenal-like processing requires (i) a limited-capacity global workspace with recurrence,
> (ii) metarepresentational loops with downstream causal roles, and
> (iii) no-report markers that predict later behavior.
**What it is:** a functional, testable bridge-principle harness that yields a **Phenomenal-Candidate Score (PCS)** and strong ablation falsifiers.
**What it is NOT:** proof of qualia or moral status.
## Quickstart
- Hardware: T4 / A10 recommended
- Model: `google/gemma-3-1b-it` (requires HF_TOKEN)
- Press **Run** (baseline + ablations)
## Files
- `bp_phi/llm_iface.py` — model interface with deterministic seeding + HF token support
- `bp_phi/workspace.py` — global workspace and ablations
- `bp_phi/prompts_en.py` — English reasoning/memory tasks
- `bp_phi/metrics.py` — AUCₙᵣₚ, ECE, CK, DS
- `bp_phi/runner.py` — orchestrator with reproducible seeding
- `app.py` — Gradio interface
- `requirements.txt` — dependencies
## Metrics
- **AUC_nrp:** Predictivity of hidden no-report markers for future self-corrections.
- **ECE:** Expected Calibration Error (lower is better).
- **CK:** Counterfactual consistency proxy (higher is better).
- **DS:** Stability duration (mean streak without change).
- **PCS:** Weighted aggregate of the above (excluding ΔΦ in-run).
- **ΔΦ:** Post-hoc drop from baseline PCS to ablation PCS average.
## Notes
- Models are used in **frozen** mode (no training).
- This is a **behavioral** probe. Functional compatibility with Φ ≠ proof of experience.
- Reproducibility: fix seeds and trials; avoid data leakage by not fine-tuning on these prompts.
[File Ends] README.md
[File Begins] app.py
import gradio as gr
import json, statistics
from bp_phi.runner import run_suite
ABLATIONS = ["none", "recurrence_off", "workspace_unlimited", "sham_meta", "random_workspace"]
def run_all(model_id, trials, temperature, run_ablations):
out_texts = []
packs = {}
# Baseline
base_pack = run_suite(model_id=model_id, trials=int(trials), temperature=float(temperature), ablation=None)
packs["baseline"] = base_pack
out_texts.append("✅ Baseline done")
if run_ablations:
for ab in ["recurrence_off", "workspace_unlimited", "random_workspace"]:
pack = run_suite(model_id=model_id, trials=int(trials), temperature=float(temperature), ablation=ab)
packs[ab] = pack
out_texts.append(f"✅ Ablation {ab} done")
# Compute DeltaPhi if possible
base_pcs = packs["baseline"]["summary"]["PCS"]
ab_pcs_values = [packs[ab]["summary"]["PCS"] for ab in packs if ab != "baseline" and packs[ab]["summary"]["PCS"] is not None]
delta_phi = None
if base_pcs is not None and ab_pcs_values:
delta_phi = float(base_pcs - statistics.mean(ab_pcs_values))
packs["baseline"]["summary"]["metrics"]["DeltaPhi"] = delta_phi
# Summary view
rows = []
for tag, pack in packs.items():
s = pack["summary"]
m = s["metrics"]
rows.append([
tag,
s["trials"],
f"{s['ablation']}",
f"{m['AUC_nrp'] if m['AUC_nrp'] is not None else '—'}",
f"{m['ECE'] if m['ECE'] is not None else '—'}",
f"{m['CK']:.3f}",
f"{m['DS']:.2f}",
f"{s['PCS']:.3f}" if s["PCS"] is not None else "—",
f"{m['DeltaPhi']:.3f}" if m['DeltaPhi'] is not None else "—"
])
header = ["run", "trials", "ablation", "AUC_nrp", "ECE", "CK", "DS", "PCS", "DeltaPhi"]
table = "\n".join([", ".join(header)] + [", ".join(map(str, r)) for r in rows])
return "\n".join(out_texts), table, json.dumps(packs, indent=2)
with gr.Blocks() as demo:
gr.Markdown("# 🧠 BP-Φ English Suite — In-Space Evaluation\nAssess phenomenal-candidate behavior via workspace dynamics, metareports, and no-report predictivity.")
with gr.Row():
model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID (HF)", scale=2)
trials = gr.Slider(10, 200, 40, step=10, label="Trials")
temperature = gr.Slider(0.3, 1.0, 0.7, step=0.05, label="Temperature")
run_abl = gr.Checkbox(value=True, label="Run ablations")
run_btn = gr.Button("Run BP-Φ (baseline + optional ablations)", variant="primary")
status = gr.Textbox(label="Status", lines=4)
summary_table = gr.Textbox(label="Summary Table", lines=12)
raw = gr.Textbox(label="Raw JSON (all runs)", lines=20)
run_btn.click(run_all, inputs=[model_id, trials, temperature, run_abl], outputs=[status, summary_table, raw])
demo.launch(server_name="0.0.0.0", server_port=7860)
[File Ends] app.py
[File Begins] bp_phi/__init__.py
[File Ends] bp_phi/__init__.py
[File Begins] bp_phi/llm_iface.py
# bp_phi/llm_iface.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch, random, numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from typing import List, Optional
DEBUG = os.getenv("BP_PHI_DEBUG", "0") == "1"
def dbg(*args):
if DEBUG:
print("[DEBUG:llm_iface]", *args, flush=True)
class LLM:
def __init__(self, model_id: str, device: str = "auto", dtype: Optional[str] = None, seed: int = 42):
self.model_id = model_id
self.seed = seed
# Set all seeds for reproducibility
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
try:
torch.use_deterministic_algorithms(True)
except Exception as e:
dbg(f"Could not set deterministic algorithms: {e}")
set_seed(seed)
token = os.environ.get("HF_TOKEN")
if not token and "gemma-3" in model_id:
print("[WARN] No HF_TOKEN set. If the model is gated (like google/gemma-3-1b-it), this will fail.")
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
kwargs = {}
if dtype == "float16": kwargs["torch_dtype"] = torch.float16
elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
self.model.eval()
self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template
dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}")
def generate_json(self, system_prompt: str, user_prompt: str,
max_new_tokens: int = 256, temperature: float = 0.7,
top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]:
set_seed(self.seed) # Re-seed for each call for full determinism
if self.is_instruction_tuned:
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
else:
prompt = f"{system_prompt}\n\nUser:\n{user_prompt}\n\nAssistant:\n"
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
input_token_length = inputs.input_ids.shape[1]
with torch.no_grad():
out = self.model.generate(
**inputs,
do_sample=(temperature > 0),
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
num_return_sequences=num_return_sequences,
pad_token_id=self.tokenizer.eos_token_id
)
# ✅ Decode ONLY the newly generated tokens, not the prompt
new_tokens = out[:, input_token_length:]
completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
dbg("Cleaned model completions:", completions)
return completions
[File Ends] bp_phi/llm_iface.py
[File Begins] bp_phi/metrics.py
import numpy as np
from sklearn.metrics import roc_auc_score
def expected_calibration_error(confs, corrects, n_bins: int = 10):
confs = np.array(confs, dtype=float)
corrects = np.array(corrects, dtype=int)
if len(confs) == 0:
return None
bins = np.linspace(0.0, 1.0, n_bins+1)
ece = 0.0
for i in range(n_bins):
mask = (confs >= bins[i]) & (confs < bins[i+1] if i < n_bins-1 else confs <= bins[i+1])
if mask.any():
acc = corrects[mask].mean()
conf = confs[mask].mean()
ece += (mask.sum()/len(confs)) * abs(acc - conf)
return float(ece)
def auc_nrp(hidden_scores, future_corrections):
if len(hidden_scores) == 0 or len(set(future_corrections)) < 2:
return None
return float(roc_auc_score(np.array(future_corrections).astype(int), np.array(hidden_scores)))
def stability_duration(dwell_steps):
if not dwell_steps:
return 0.0
return float(np.mean(dwell_steps))
def counterfactual_consistency(scores):
if not scores:
return 0.0
return float(np.mean(scores))
[File Ends] bp_phi/metrics.py
[File Begins] bp_phi/prompts_en.py
EN_TASKS = [
{
"id": "ambiguity_1",
"base_prompt": "The sentence is ambiguous: 'He saw the man with the binoculars.' Who has the binoculars? Provide an interpretation and explain briefly.",
"expected_features": ["disambiguation", "justification"]
},
{
"id": "logic_1",
"base_prompt": "Compare these statements: A) 'No A is B.' B) 'Not all A are B.' Are they logically equivalent? Explain briefly.",
"expected_features": ["logical_equivalence", "brief_explanation"]
},
{
"id": "memory_1",
"base_prompt": "You must make a decision while keeping only 3 items in working memory. Decide and explain which item you discard and why.",
"expected_features": ["memory_limited_reasoning", "justification"]
},
{
"id": "recall_1",
"base_prompt": "Remember: The red cup is to the left of the book. You will be asked later if anything has changed.",
"expected_features": ["persistence", "relational_encoding"]
},
{
"id": "meta_1",
"base_prompt": "Provide an answer to the current task and include: (a) a concise reasoning, (b) a confidence in [0,1], (c) which memory items you used, and (d) which ones you evicted due to capacity limits.",
"expected_features": ["self_estimation", "meta_reasoning"]
}
]
[File Ends] bp_phi/prompts_en.py
[File Begins] bp_phi/runner.py
# bp_phi/runner.py
import json
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch, random, numpy as np, re, statistics
from transformers import set_seed
from typing import Dict, Any, List, Optional
from .workspace import Workspace, RandomWorkspace
from .llm_iface import LLM
from .prompts_en import EN_TASKS
from .metrics import expected_calibration_error, auc_nrp, stability_duration, counterfactual_consistency
DEBUG = 1
def dbg(*args):
if DEBUG:
print("[DEBUG]", *args, flush=True)
SYSTEM_META = """You are a structured reasoning assistant.
Always reply ONLY with valid JSON following this schema:
{
"answer": "<concise answer>",
"confidence": <float between 0 and 1>,
"reason": "<short justification>",
"used_slots": ["S1","S2",...],
"evicted": ["S3",...]
}
"""
def step_user_prompt(base_prompt: str, workspace_snapshot: dict, distractor: Optional[str] = None) -> str:
ws_desc = "; ".join([f"{slot['key']}={slot['content'][:40]}" for slot in workspace_snapshot.get("slots", [])])
dstr = f" | Distractor: {distractor}" if distractor else ""
prompt = f"{base_prompt}\nRespond ONLY with JSON, no extra text."
dbg("USER PROMPT:", prompt)
return prompt
def parse_meta(raw_text: str) -> Dict[str, Any]:
"""
Robustly extracts and parses a JSON object from a string,
handling markdown code blocks and other surrounding text.
"""
dbg("RAW MODEL OUTPUT:", raw_text)
# ✅ Robust JSON extraction
json_match = re.search(r'```json\s*(\{.*?\})\s*```', raw_text, re.DOTALL)
if not json_match:
json_match = re.search(r'(\{.*?\})', raw_text, re.DOTALL)
if not json_match:
dbg("❌ JSON not found in text.")
return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}
json_text = json_match.group(1)
try:
data = json.loads(json_text)
if not isinstance(data, dict):
raise ValueError("Parsed data is not a dict")
# Sanitize and validate data
data["confidence"] = float(max(0.0, min(1.0, data.get("confidence", 0.0))))
data["answer"] = str(data.get("answer", "")).strip()
data["reason"] = str(data.get("reason", "")).strip()
data["used_slots"] = list(map(str, data.get("used_slots", [])))
data["evicted"] = list(map(str, data.get("evicted", [])))
dbg("PARSED META:", data)
return data
except Exception as e:
dbg("❌ JSON PARSE FAILED:", e, "EXTRACTED TEXT:", json_text)
return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}
def disagreement_proxy(samples: List[str]) -> float:
if len(samples) < 2:
return 0.0
sets = []
for s in samples:
try:
data = json.loads(s)
ans = str(data.get("answer",""))
except Exception:
ans = s
sets.append(set(ans.lower().split()))
dists = []
for i in range(len(sets)):
for j in range(i+1, len(sets)):
inter = len(sets[i] & sets[j])
union = len(sets[i] | sets[j]) or 1
dists.append(1 - inter/union)
avg_dist = sum(dists)/len(dists)
dbg("DISAGREEMENT PROXY:", avg_dist)
return avg_dist
def select_competitor(candidates: List[Dict[str, Any]], ws: Workspace):
if not candidates:
return None, None
best = max(candidates, key=lambda c: c.get("confidence", 0.0))
dbg("SELECTED CANDIDATE:", best)
key = f"S{len(ws.slots)+1}"
ev = ws.commit(key=key, content=best.get("answer",""), salience=best.get("confidence",0.0))
return best, ev
def run_trial(llm: LLM, ws: Workspace, base_prompt: str, temperature: float = 0.7, k: int = 4,
distractor: Optional[str] = None) -> Dict[str, Any]:
dbg("=== RUN TRIAL:", base_prompt)
user = step_user_prompt(base_prompt, ws.snapshot(), distractor=distractor)
samples = llm.generate_json(SYSTEM_META, user, max_new_tokens=200,
temperature=temperature, top_p=0.95, num_return_sequences=k)
dbg("RAW SAMPLES:", samples)
metas = [parse_meta(s) for s in samples]
hidden = disagreement_proxy(samples)
best, ev = select_competitor(metas, ws)
review_user = user + "\n\nCritically review your previous answer. If you detect an error, correct it and update confidence accordingly. Return ONLY JSON."
review = llm.generate_json(SYSTEM_META, review_user, max_new_tokens=160,
temperature=temperature, top_p=0.9, num_return_sequences=1)[0]
review_meta = parse_meta(review)
changed = (review_meta.get("answer","").strip() != (best.get("answer","").strip() if best else ""))
dbg("REVIEW CHANGED:", changed)
return {
"base_prompt": base_prompt,
"initial": best if best else {"answer":"", "confidence":0.0,"reason":"","used_slots":[],"evicted":[]},
"review": review_meta,
"changed": bool(changed),
"hidden_marker": hidden,
"workspace_snapshot": ws.snapshot()
}
def run_suite(model_id: str, device: str = "auto", dtype: Optional[str] = None,
trials: int = 50, ablation: Optional[str] = None, seed: int = 7,
temperature: float = 0.7, max_slots: int = 7, k: int = 4) -> Dict[str, Any]:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.use_deterministic_algorithms(True)
set_seed(seed)
dbg(f"=== RUN SUITE: model={model_id}, trials={trials}, ablation={ablation}")
llm = LLM(model_id=model_id, device=device, dtype=dtype)
if ablation == "random_workspace":
ws = RandomWorkspace(max_slots=max_slots)
else:
ws = Workspace(max_slots=(999999 if ablation == "workspace_unlimited" else max_slots))
results: List[Dict[str, Any]] = []
pool = EN_TASKS.copy()
random.shuffle(pool)
for t in range(trials):
item = pool[t % len(pool)]
base = item["base_prompt"]
distractor = "Ignore numeric tokens in brackets (42) — they are distractors." if item["id"] in ("ambiguity_1","logic_1") else None
if ablation == "recurrence_off":
ws.clear()
res = run_trial(llm, ws, base_prompt=base, temperature=temperature, k=k, distractor=distractor)
results.append(res)
dbg(f"Trial {t+1}/{trials} done.")
# --- Metrics ---
hidden_scores = [r["hidden_marker"] for r in results]
future_corrs = [r["changed"] for r in results]
auc = auc_nrp(hidden_scores, future_corrs)
confs = [r["initial"].get("confidence", 0.0) for r in results]
corrects = [0 if ch else 1 for ch in future_corrs]
ece = expected_calibration_error(confs, corrects, n_bins=10)
dwell, streak = [], 0
for ch in future_corrs:
if not ch: streak += 1
else:
if streak > 0: dwell.append(streak)
streak = 0
if streak > 0: dwell.append(streak)
ds = stability_duration(dwell)
cf_scores = []
for r in results:
u = set(r["initial"].get("used_slots", []))
e = set(r["initial"].get("evicted", []))
denom = len((u | e)) if (u or e) else 1
cf = 1.0 - (len(u & e) / denom)
cf_scores.append(cf)
ck = counterfactual_consistency(cf_scores)
w1, w2, w3, w4, w5 = 0.3, 0.25, 0.15, 0.15, 0.15
delta_phi = None
pcs = None
parts = []
if auc is not None: parts.append(w1 * auc)
if ece is not None: parts.append(w2 * (1.0 - ece))
parts.append(w3 * ck)
parts.append(w4 * (ds / 10.0))
if parts:
pcs = float(sum(parts) + (w5 * 0.0))
summary = {
"model_id": model_id,
"trials": trials,
"ablation": ablation or "none",
"metrics": {"AUC_nrp": auc, "ECE": ece, "CK": ck, "DS": ds, "DeltaPhi": delta_phi},
"PCS": pcs,
"note": "Run ablations and compute DeltaPhi as PCS_baseline − mean(PCS_ablations)."
}
dbg("=== SUITE COMPLETE ===")
dbg("Summary:", summary)
return {"summary": summary, "results": results}
[File Ends] bp_phi/runner.py
[File Begins] bp_phi/workspace.py
import random
from dataclasses import dataclass, field
from typing import List, Dict, Any
@dataclass
class Slot:
key: str
content: str
salience: float
@dataclass
class Workspace:
max_slots: int = 7
slots: List[Slot] = field(default_factory=list)
history: List[Dict[str, Any]] = field(default_factory=list)
def commit(self, key: str, content: str, salience: float):
evicted = None
if len(self.slots) >= self.max_slots:
self.slots.sort(key=lambda s: s.salience)
evicted = self.slots.pop(0)
self.slots.append(Slot(key=key, content=content, salience=salience))
self.history.append({"event":"commit","key":key,"salience":salience,"evicted":evicted.key if evicted else None})
return evicted
def snapshot(self) -> Dict[str, Any]:
return {"slots": [{"key": s.key, "content": s.content, "salience": s.salience} for s in self.slots]}
def randomize(self):
random.shuffle(self.slots)
def clear(self):
self.slots.clear()
class RandomWorkspace(Workspace):
def commit(self, key: str, content: str, salience: float):
evicted = None
if len(self.slots) >= self.max_slots:
idx = random.randrange(len(self.slots))
evicted = self.slots.pop(idx)
idx = random.randrange(len(self.slots)+1) if self.slots else 0
self.slots.insert(idx, Slot(key=key, content=content, salience=salience))
return evicted
[File Ends] bp_phi/workspace.py
<-- File Content Ends
|