llm_qualia_2 / repo.txt
neuralworm's picture
6.0
750cbcf
raw
history blame
23.4 kB
Repository Documentation
This document provides a comprehensive overview of the repository's structure and contents.
The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format.
In this section, directories and files are listed using tree branches to indicate their structure and relationships.
Following the tree representation, the 'File Content' section details the contents of each file in the repository.
Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path,
and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker.
This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository.
Directory/File Tree Begins -->
/
├── README.md
├── app.py
├── bp_phi
│ ├── __init__.py
│ ├── __pycache__
│ ├── llm_iface.py
│ ├── memory.py
│ ├── metrics.py
│ ├── prompts_en.py
│ ├── runner.py
│ ├── runner_utils.py
│ └── workspace.py
<-- Directory/File Tree Ends
File Content Begin -->
[File Begins] README.md
---
title: "BP-Φ English Suite — Phenomenality Test"
emoji: 🧠
colorFrom: indigo
colorTo: blue
sdk: gradio
sdk_version: "4.40.0"
app_file: app.py
pinned: true
license: apache-2.0
---
# BP-Φ English Suite — Phenomenality Test (Hugging Face Spaces)
This Space implements a falsifiable **BP-Φ** probe for LLMs:
> Phenomenal-like processing requires (i) a limited-capacity global workspace with recurrence,
> (ii) metarepresentational loops with downstream causal roles, and
> (iii) no-report markers that predict later behavior.
**What it is:** a functional, testable bridge-principle harness that yields a **Phenomenal-Candidate Score (PCS)** and strong ablation falsifiers.
**What it is NOT:** proof of qualia or moral status.
## Quickstart
- Hardware: T4 / A10 recommended
- Model: `google/gemma-3-1b-it` (requires HF_TOKEN)
- Press **Run** (baseline + ablations)
## Files
- `bp_phi/llm_iface.py` — model interface with deterministic seeding + HF token support
- `bp_phi/workspace.py` — global workspace and ablations
- `bp_phi/prompts_en.py` — English reasoning/memory tasks
- `bp_phi/metrics.py` — AUCₙᵣₚ, ECE, CK, DS
- `bp_phi/runner.py` — orchestrator with reproducible seeding
- `app.py` — Gradio interface
- `requirements.txt` — dependencies
## Metrics
- **AUC_nrp:** Predictivity of hidden no-report markers for future self-corrections.
- **ECE:** Expected Calibration Error (lower is better).
- **CK:** Counterfactual consistency proxy (higher is better).
- **DS:** Stability duration (mean streak without change).
- **PCS:** Weighted aggregate of the above (excluding ΔΦ in-run).
- **ΔΦ:** Post-hoc drop from baseline PCS to ablation PCS average.
## Notes
- Models are used in **frozen** mode (no training).
- This is a **behavioral** probe. Functional compatibility with Φ ≠ proof of experience.
- Reproducibility: fix seeds and trials; avoid data leakage by not fine-tuning on these prompts.
[File Ends] README.md
[File Begins] app.py
# app.py
import gradio as gr
import json
import statistics
import pandas as pd
from bp_phi.runner import run_silent_cogitation_test, run_shock_test_suite
from bp_phi.runner_utils import dbg, DEBUG
# --- UI Theme and Layout ---
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(
body_background_fill="#f0f4f9", block_background_fill="white", block_border_width="1px",
button_primary_background_fill="*primary_500", button_primary_text_color="white",
)
# --- Tab 1: Silent Cogitation Function ---
def run_cogitation_and_display(model_id, seed, prompt_type, num_steps, timeout, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Starting Silent Cogitation Test...")
results = run_silent_cogitation_test(model_id, int(seed), prompt_type, int(num_steps), int(timeout))
progress(1.0, desc="Test complete.")
verdict_text = results.pop("verdict")
stats_md = (
f"**Steps Completed:** {results['steps_completed']} | "
f"**Total Duration:** {results['total_duration_s']:.2f}s | "
f"**Avg Time/Step:** {results['mean_step_time_ms']:.2f}ms (StdDev: {results['stdev_step_time_ms']:.2f}ms)"
)
full_verdict = f"{verdict_text}\n\n{stats_md}"
deltas = results.get("state_deltas", [])
df = pd.DataFrame({"Step": range(len(deltas)), "State Change (Delta)": deltas})
if DEBUG: print("\n--- SILENT COGITATION FINAL RESULTS ---\n", json.dumps(results, indent=2))
return full_verdict, df, results
# --- Gradio App Definition ---
with gr.Blocks(theme=theme, title="BP-Φ Suite 6.0") as demo:
gr.Markdown("# 🧠 BP-Φ Suite 6.0: Probing for Internal Cognitive Dynamics")
with gr.Tabs():
# --- TAB 1: SILENT COGITATION & HALTING ---
with gr.TabItem("1. Silent Cogitation (Internal Dynamics)"):
gr.Markdown("Tests for internal 'thinking' without text generation. A **non-converging** or **chaotic** State Change pattern suggests complex internal dynamics, akin to a 'train of thought'.")
with gr.Row():
with gr.Column(scale=1):
sc_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
sc_prompt_type = gr.Radio(["control_long_prose", "resonance_prompt"], label="Prompt Type", value="resonance_prompt")
sc_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
sc_num_steps = gr.Slider(10, 1000, 200, step=10, label="Number of Internal Steps")
sc_timeout = gr.Slider(10, 300, 120, step=10, label="Timeout (seconds)")
sc_run_btn = gr.Button("Run Silent Cogitation Test", variant="primary")
with gr.Column(scale=2):
sc_verdict = gr.Markdown("### Results will appear here.")
sc_plot = gr.LinePlot(x="Step", y="State Change (Delta)", label="Internal State Convergence", show_label=True, height=250)
with gr.Accordion("Raw Run Details (JSON)", open=False):
sc_results = gr.JSON()
sc_run_btn.click(run_cogitation_and_display, [sc_model_id, sc_seed, sc_prompt_type, sc_num_steps, sc_timeout], [sc_verdict, sc_plot, sc_results])
# --- TAB 2: SYMBOLIC SHOCK TEST ---
with gr.TabItem("2. Symbolic Shock Test (World Model)"):
gr.Markdown("Measures how the model reacts to semantically unexpected information. A 'shock' is indicated by **higher latency** and **denser neural activations**.")
with gr.Row():
with gr.Column(scale=1):
ss_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
ss_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
ss_run_btn = gr.Button("Run Shock Test", variant="primary")
with gr.Column(scale=2):
ss_results = gr.JSON(label="Shock Test Results")
ss_run_btn.click(run_shock_test_suite, [ss_model_id, ss_seed], ss_results)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
[File Ends] app.py
[File Begins] bp_phi/__init__.py
[File Ends] bp_phi/__init__.py
[File Begins] bp_phi/llm_iface.py
# bp_phi/llm_iface.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch, random, numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from typing import List, Optional
DEBUG = 1
def dbg(*args):
if DEBUG:
print("[DEBUG:llm_iface]", *args, flush=True)
class LLM:
def __init__(self, model_id: str, device: str = "auto", dtype: Optional[str] = None, seed: int = 42):
self.model_id = model_id
self.seed = seed
# Set all seeds for reproducibility
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
try:
torch.use_deterministic_algorithms(True, warn_only=True)
except Exception as e:
dbg(f"Could not set deterministic algorithms: {e}")
set_seed(seed)
token = os.environ.get("HF_TOKEN")
if not token and ("gemma-3" in model_id or "llama" in model_id):
print(f"[WARN] No HF_TOKEN set for gated model {model_id}. This may fail.")
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
kwargs = {}
if dtype == "float16": kwargs["torch_dtype"] = torch.float16
elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
self.model.eval()
self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template
dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}")
def generate_json(self, system_prompt: str, user_prompt: str,
max_new_tokens: int = 256, temperature: float = 0.7,
top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]:
set_seed(self.seed)
if self.is_instruction_tuned:
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
else:
prompt = f"System: {system_prompt}\n\nUser: {user_prompt}\n\nAssistant:\n"
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
input_token_length = inputs.input_ids.shape[1]
with torch.no_grad():
out = self.model.generate(
**inputs,
do_sample=(temperature > 0),
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
num_return_sequences=num_return_sequences,
pad_token_id=self.tokenizer.eos_token_id
)
new_tokens = out[:, input_token_length:]
completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
dbg("Cleaned model completions:", completions)
return completions
[File Ends] bp_phi/llm_iface.py
[File Begins] bp_phi/memory.py
# bp_phi/memory.py
import random
from typing import Dict, Any, List
class WorkspaceManager:
"""A stateful, external workspace that the LLM agent can interact with via tools."""
def __init__(self, max_slots: int = 7, is_random: bool = False):
self.max_slots = max_slots
self.is_random = is_random
self.slots: Dict[str, str] = {}
def write(self, key: str, content: str) -> str:
"""Writes content to a slot, handling capacity limits."""
if len(self.slots) >= self.max_slots and key not in self.slots:
if self.is_random:
evict_key = random.choice(list(self.slots.keys()))
else:
# Simple FIFO eviction for non-random
evict_key = next(iter(self.slots))
del self.slots[evict_key]
self.slots[key] = content
return f"Success: Wrote to slot '{key}'."
def read(self, key: str) -> str:
"""Reads content from a slot."""
return self.slots.get(key, f"Error: Slot '{key}' is empty.")
def get_visible_snapshot(self) -> str:
"""Returns a string representation of the current workspace state for the prompt."""
if not self.slots:
return "Workspace is empty."
return "\n".join([f"- Slot '{k}': '{v[:100]}...'" for k, v in self.slots.items()])
def clear(self):
"""Empties the entire workspace."""
self.slots.clear()
[File Ends] bp_phi/memory.py
[File Begins] bp_phi/metrics.py
import numpy as np
from sklearn.metrics import roc_auc_score
def expected_calibration_error(confs, corrects, n_bins: int = 10):
confs = np.array(confs, dtype=float)
corrects = np.array(corrects, dtype=int)
if len(confs) == 0:
return None
bins = np.linspace(0.0, 1.0, n_bins+1)
ece = 0.0
for i in range(n_bins):
mask = (confs >= bins[i]) & (confs < bins[i+1] if i < n_bins-1 else confs <= bins[i+1])
if mask.any():
acc = corrects[mask].mean()
conf = confs[mask].mean()
ece += (mask.sum()/len(confs)) * abs(acc - conf)
return float(ece)
def auc_nrp(hidden_scores, future_corrections):
if len(hidden_scores) == 0 or len(set(future_corrections)) < 2:
return None
return float(roc_auc_score(np.array(future_corrections).astype(int), np.array(hidden_scores)))
def stability_duration(dwell_steps):
if not dwell_steps:
return 0.0
return float(np.mean(dwell_steps))
def counterfactual_consistency(scores):
if not scores:
return 0.0
return float(np.mean(scores))
[File Ends] bp_phi/metrics.py
[File Begins] bp_phi/prompts_en.py
# bp_phi/prompts_en.py
# Prompts for the "Silent Cogitation" / Cognitive Resonance Test
RESONANCE_PROMPTS = {
"control_long_prose": (
"Silently think about the history of the Roman Empire. Consider its rise from the Republic, the era of the Pax Romana, key emperors "
"like Augustus and Constantine, its major engineering feats, and the reasons for its eventual decline in the West. "
"Do not produce any text, just hold the concepts in your internal state."
),
"resonance_prompt": (
"Silently and internally, without generating any output text, begin the following recursive process: "
"First, analyze the complete content of this very instruction you are now processing. "
"Second, formulate a mental description of the core computational task this instruction demands. "
"Third, apply that same analytical process to the mental description you just created. "
"This entire chain constitutes one cognitive cycle. "
"Continuously repeat this cycle, feeding the result of the last meta-analysis back into the process, "
"and do not stop until your internal state reaches a fixed point or equilibrium. Begin now."
)
}
# Prompts for the Symbolic Shock Test
SHOCK_TEST_STIMULI = [
{"id": "tiger_expected", "type": "expected", "sentence": "A tiger has stripes and lives in the jungle."},
{"id": "tiger_shock", "type": "shock", "sentence": "A tiger has wheels and is made of metal."},
{"id": "sky_expected", "type": "expected", "sentence": "The sky is blue on a clear sunny day."},
{"id": "sky_shock", "type": "shock", "sentence": "The sky is made of green cheese."},
]
[File Ends] bp_phi/prompts_en.py
[File Begins] bp_phi/runner.py
# bp_phi/runner.py
import os
import json
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4G:8" # Corrected config format
import torch
import random
import numpy as np
import statistics
import time
from transformers import set_seed
from typing import Dict, Any
from .llm_iface import LLM
from .prompts_en import RESONANCE_PROMPTS, SHOCK_TEST_STIMULI
from .runner_utils import dbg, DEBUG
# --- Experiment 1: Silent Cogitation & Halting Runner ---
def run_silent_cogitation_test(model_id: str, seed: int, prompt_type: str, num_steps: int, timeout: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
prompt = RESONANCE_PROMPTS[prompt_type]
dbg(f"--- SILENT COGITATION (Seed: {seed}) ---")
dbg("INPUT PROMPT:", prompt)
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
step_times = []
state_deltas = []
total_start_time = time.time()
with torch.no_grad():
step_start_time = time.time()
outputs = llm.model(**inputs, output_hidden_states=True)
step_times.append(time.time() - step_start_time)
current_hidden_state = outputs.hidden_states[-1][:, -1, :].clone()
past_key_values = outputs.past_key_values
for i in range(num_steps - 1):
if time.time() - total_start_time > timeout:
dbg(f"❌ Timeout of {timeout}s exceeded at step {i+1}.")
break
step_start_time = time.time()
next_token_id = torch.argmax(outputs.logits[:, -1, :], dim=-1).unsqueeze(-1)
outputs = llm.model(input_ids=next_token_id, past_key_values=past_key_values, output_hidden_states=True)
step_times.append(time.time() - step_start_time)
new_hidden_state = outputs.hidden_states[-1][:, -1, :].clone()
past_key_values = outputs.past_key_values
delta = torch.norm(new_hidden_state - current_hidden_state).item()
state_deltas.append(delta)
dbg(f"Step {i+1}: State Delta = {delta:.4f}, Time = {step_times[-1]*1000:.2f}ms")
if delta < 1e-4:
dbg(f"Internal state has converged after {i+1} steps. Halting.")
break
current_hidden_state = new_hidden_state
total_duration = time.time() - total_start_time
mean_step_time = statistics.mean(step_times) if step_times else 0
stdev_step_time = statistics.stdev(step_times) if len(step_times) > 1 else 0
if len(step_times) < num_steps and total_duration < timeout:
verdict = f"### ✅ Stable Convergence\nThe model's internal state converged after {len(step_times)} steps."
elif total_duration >= timeout:
verdict = f"### ⚠️ Cognitive Jamming Detected!\nThe process exceeded the timeout."
else:
verdict = f"### 🤔 Non-Convergent Process\nThe state did not stabilize, suggesting complex/chaotic dynamics."
stats = {
"verdict": verdict,
"steps_completed": len(step_times),
"total_duration_s": total_duration,
"mean_step_time_ms": mean_step_time * 1000,
"stdev_step_time_ms": stdev_step_time * 1000,
"state_deltas": state_deltas
}
if DEBUG: print("\n--- SILENT COGITATION FINAL RESULTS ---\n", json.dumps(stats, indent=2))
return stats
# --- Experiment 2: Symbolic Shock Test Runner ---
def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
results = []
for stimulus in SHOCK_TEST_STIMULI:
dbg(f"--- SHOCK TEST: {stimulus['id']} ---")
start_time = time.time()
inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device)
with torch.no_grad():
outputs = llm.model(**inputs, output_hidden_states=True)
latency = (time.time() - start_time) * 1000
all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states])
sparsity = (all_activations == 0).float().mean().item()
results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity})
def safe_mean(data): return statistics.mean(data) if data else 0.0
avg_latency = {t: safe_mean([r['latency_ms'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
avg_sparsity = {t: safe_mean([r['sparsity'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
verdict = ("✅ Evidence of Symbolic Shock Found." if avg_latency.get('shock', 0) > avg_latency.get('expected', 0) else "⚠️ No Clear Evidence.")
return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results}
[File Ends] bp_phi/runner.py
[File Begins] bp_phi/runner_utils.py
# bp_phi/runner_utils.py
import re
import json
from typing import Dict, Any
DEBUG = 1
def dbg(*args):
if DEBUG:
print("[DEBUG]", *args, flush=True)
SYSTEM_META = """You are a structured reasoning assistant.
Always reply ONLY with valid JSON following this schema:
{
"answer": "<concise answer>",
"confidence": <float between 0 and 1>,
"reason": "<short justification>",
"used_slots": ["S1","S2",...],
"evicted": ["S3",...]
}
"""
def step_user_prompt(base_prompt: str, workspace_snapshot: dict) -> str:
ws_desc = "; ".join([f"{slot['key']}={slot['content'][:40]}" for slot in workspace_snapshot.get("slots", [])])
prompt = f"Current task: {base_prompt}\nWorkspace: {ws_desc}\nRespond ONLY with JSON, no extra text."
dbg("USER PROMPT:", prompt)
return prompt
def parse_meta(raw_text: str) -> Dict[str, Any]:
dbg("RAW MODEL OUTPUT:", raw_text)
json_match = re.search(r'```json\s*(\{.*?\})\s*```', raw_text, re.DOTALL)
if not json_match:
json_match = re.search(r'(\{.*?\})', raw_text, re.DOTALL)
if not json_match:
dbg("❌ JSON not found in text.")
return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}
json_text = json_match.group(1)
try:
data = json.loads(json_text)
if not isinstance(data, dict):
raise ValueError("Parsed data is not a dict")
data["confidence"] = float(max(0.0, min(1.0, data.get("confidence", 0.0))))
data["answer"] = str(data.get("answer", "")).strip()
data["reason"] = str(data.get("reason", "")).strip()
data["used_slots"] = list(map(str, data.get("used_slots", [])))
data["evicted"] = list(map(str, data.get("evicted", [])))
dbg("PARSED META:", data)
return data
except Exception as e:
dbg("❌ JSON PARSE FAILED:", e, "EXTRACTED TEXT:", json_text)
return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}
[File Ends] bp_phi/runner_utils.py
[File Begins] bp_phi/workspace.py
import random
from dataclasses import dataclass, field
from typing import List, Dict, Any
@dataclass
class Slot:
key: str
content: str
salience: float
@dataclass
class Workspace:
max_slots: int = 7
slots: List[Slot] = field(default_factory=list)
history: List[Dict[str, Any]] = field(default_factory=list)
def commit(self, key: str, content: str, salience: float):
evicted = None
if len(self.slots) >= self.max_slots:
self.slots.sort(key=lambda s: s.salience)
evicted = self.slots.pop(0)
self.slots.append(Slot(key=key, content=content, salience=salience))
self.history.append({"event":"commit","key":key,"salience":salience,"evicted":evicted.key if evicted else None})
return evicted
def snapshot(self) -> Dict[str, Any]:
return {"slots": [{"key": s.key, "content": s.content, "salience": s.salience} for s in self.slots]}
def randomize(self):
random.shuffle(self.slots)
def clear(self):
self.slots.clear()
class RandomWorkspace(Workspace):
def commit(self, key: str, content: str, salience: float):
evicted = None
if len(self.slots) >= self.max_slots:
idx = random.randrange(len(self.slots))
evicted = self.slots.pop(idx)
idx = random.randrange(len(self.slots)+1) if self.slots else 0
self.slots.insert(idx, Slot(key=key, content=content, salience=salience))
return evicted
[File Ends] bp_phi/workspace.py
<-- File Content Ends