Spaces:
Sleeping
Sleeping
Commit
·
0916370
1
Parent(s):
b87f0f0
multi-turn & appearance
Browse files- app.py +108 -42
- bp_phi/__pycache__/prompts_en.cpython-310.pyc +0 -0
- bp_phi/__pycache__/runner.cpython-310.pyc +0 -0
- bp_phi/prompts_en.py +80 -14
- bp_phi/runner.py +110 -96
app.py
CHANGED
|
@@ -1,67 +1,133 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import json
|
|
|
|
|
|
|
| 3 |
from bp_phi.runner import run_suite
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
def
|
| 8 |
out_texts = []
|
| 9 |
packs = {}
|
|
|
|
| 10 |
|
| 11 |
-
# Baseline
|
| 12 |
-
|
|
|
|
| 13 |
packs["baseline"] = base_pack
|
| 14 |
-
out_texts.append("✅ Baseline
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
# Compute DeltaPhi if possible
|
| 23 |
-
base_pcs = packs["baseline"]["summary"]["PCS"]
|
| 24 |
-
ab_pcs_values = [packs[ab]["summary"]["PCS"] for ab in packs if ab != "baseline" and packs[ab]["summary"]["PCS"] is not None]
|
| 25 |
delta_phi = None
|
|
|
|
|
|
|
| 26 |
if base_pcs is not None and ab_pcs_values:
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
# Summary view
|
| 31 |
-
rows = []
|
| 32 |
for tag, pack in packs.items():
|
| 33 |
s = pack["summary"]
|
| 34 |
m = s["metrics"]
|
| 35 |
-
|
|
|
|
| 36 |
tag,
|
| 37 |
-
s["
|
| 38 |
-
f"{
|
| 39 |
-
f"{m['
|
| 40 |
-
f"{m['
|
| 41 |
-
f"{m['
|
| 42 |
-
f"{
|
| 43 |
-
f"{s['PCS']:.3f}" if s["PCS"] is not None else "—",
|
| 44 |
-
f"{m['DeltaPhi']:.3f}" if m['DeltaPhi'] is not None else "—"
|
| 45 |
])
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
with gr.Blocks() as demo:
|
| 53 |
-
gr.Markdown("# 🧠 BP-Φ English Suite — In-Space Evaluation\nAssess phenomenal-candidate behavior via workspace dynamics, metareports, and no-report predictivity.")
|
| 54 |
with gr.Row():
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
run_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
+
import json
|
| 4 |
+
import statistics
|
| 5 |
+
import pandas as pd
|
| 6 |
from bp_phi.runner import run_suite
|
| 7 |
|
| 8 |
+
# --- UI Theme and Layout (Backwards-compatible version) ---
|
| 9 |
+
# Removed 'block_shadow' and 'button_shadow' for compatibility with older Gradio versions.
|
| 10 |
+
theme = gr.themes.Soft(
|
| 11 |
+
primary_hue="blue",
|
| 12 |
+
secondary_hue="sky",
|
| 13 |
+
).set(
|
| 14 |
+
body_background_fill="#f0f4f9",
|
| 15 |
+
block_background_fill="white",
|
| 16 |
+
block_border_width="1px",
|
| 17 |
+
# block_shadow="*shadow_drop_lg", # Removed for compatibility
|
| 18 |
+
# button_shadow="*shadow_drop_lg", # Removed for compatibility
|
| 19 |
+
button_primary_background_fill="*primary_500",
|
| 20 |
+
button_primary_text_color="white",
|
| 21 |
+
)
|
| 22 |
|
| 23 |
+
def run_and_display(model_id, trials, seed, temperature, run_ablations, progress=gr.Progress(track_tqdm=True)):
|
| 24 |
out_texts = []
|
| 25 |
packs = {}
|
| 26 |
+
ablation_modes = ["recurrence_off", "workspace_unlimited", "random_workspace"] if run_ablations else []
|
| 27 |
|
| 28 |
+
# --- Run Baseline ---
|
| 29 |
+
progress(0, desc="Running Baseline...")
|
| 30 |
+
base_pack = run_suite(model_id=model_id, trials=int(trials), seed=int(seed), temperature=float(temperature), ablation=None)
|
| 31 |
packs["baseline"] = base_pack
|
| 32 |
+
out_texts.append("✅ Baseline run completed.")
|
| 33 |
|
| 34 |
+
# --- Run Ablations ---
|
| 35 |
+
for i, ab in enumerate(ablation_modes):
|
| 36 |
+
progress((i + 1) / (len(ablation_modes) + 1), desc=f"Running Ablation: {ab}...")
|
| 37 |
+
pack = run_suite(model_id=model_id, trials=int(trials), seed=int(seed), temperature=float(temperature), ablation=ab)
|
| 38 |
+
packs[ab] = pack
|
| 39 |
+
out_texts.append(f"✅ Ablation '{ab}' completed.")
|
| 40 |
+
|
| 41 |
+
progress(1.0, desc="All runs complete. Analyzing...")
|
| 42 |
+
|
| 43 |
+
# --- Analysis & Interpretation ---
|
| 44 |
+
base_pcs = packs["baseline"]["summary"]["metrics"]["PCS"]
|
| 45 |
+
ab_pcs_values = [
|
| 46 |
+
packs[ab]["summary"]["metrics"]["PCS"]
|
| 47 |
+
for ab in ablation_modes
|
| 48 |
+
if ab in packs and packs[ab]["summary"]["metrics"]["PCS"] is not None
|
| 49 |
+
]
|
| 50 |
|
|
|
|
|
|
|
|
|
|
| 51 |
delta_phi = None
|
| 52 |
+
verdict_text = "Analysis incomplete. Run ablations to calculate ΔΦ."
|
| 53 |
+
|
| 54 |
if base_pcs is not None and ab_pcs_values:
|
| 55 |
+
mean_ab_pcs = statistics.mean(ab_pcs_values)
|
| 56 |
+
delta_phi = float(base_pcs - mean_ab_pcs)
|
| 57 |
+
packs["baseline"]["summary"]["metrics"]["DeltaPhi"] = delta_phi # Add to baseline summary
|
| 58 |
+
|
| 59 |
+
if delta_phi > 0.05: # Lowered threshold slightly for sensitivity
|
| 60 |
+
verdict_text = (
|
| 61 |
+
f"### ✅ Hypothesis Corroborated (ΔΦ = {delta_phi:.3f})\n"
|
| 62 |
+
"A significant performance drop was observed when workspace mechanisms were ablated. "
|
| 63 |
+
"This suggests the model's performance **is functionally dependent** on its recurrent, limited-capacity workspace, "
|
| 64 |
+
"aligning with the BP-Φ hypothesis for phenomenal-candidate processing."
|
| 65 |
+
)
|
| 66 |
+
else:
|
| 67 |
+
verdict_text = (
|
| 68 |
+
f"### ⚠️ Null Hypothesis Confirmed (ΔΦ = {delta_phi:.3f})\n"
|
| 69 |
+
"No significant performance drop was observed under ablations. "
|
| 70 |
+
"The model's reasoning does not appear to depend on the workspace architecture tested. "
|
| 71 |
+
"This behavior is consistent with a functional zombie (a pure feed-forward system)."
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# --- Format for Display ---
|
| 75 |
+
summary_data = []
|
| 76 |
+
header = ["Run", "Ablation", "PCS", "Recall Accuracy", "AUC_nrp", "ECE", "ΔΦ"]
|
| 77 |
|
|
|
|
|
|
|
| 78 |
for tag, pack in packs.items():
|
| 79 |
s = pack["summary"]
|
| 80 |
m = s["metrics"]
|
| 81 |
+
delta_val = packs["baseline"]["summary"]["metrics"].get("DeltaPhi")
|
| 82 |
+
summary_data.append([
|
| 83 |
tag,
|
| 84 |
+
s["ablation"],
|
| 85 |
+
f"{m['PCS']:.3f}" if m.get('PCS') is not None else "N/A",
|
| 86 |
+
f"{m['Recall_Accuracy']:.2%}" if m.get('Recall_Accuracy') is not None else "N/A",
|
| 87 |
+
f"{m['AUC_nrp']:.3f}" if m.get('AUC_nrp') is not None else "N/A",
|
| 88 |
+
f"{m['ECE']:.3f}" if m.get('ECE') is not None else "N/A",
|
| 89 |
+
f"{delta_val:.3f}" if tag == "baseline" and delta_val is not None else "—"
|
|
|
|
|
|
|
| 90 |
])
|
| 91 |
|
| 92 |
+
df = pd.DataFrame(summary_data, columns=header)
|
| 93 |
+
|
| 94 |
+
return "\n".join(out_texts), verdict_text, df, packs
|
| 95 |
|
| 96 |
+
# --- Gradio App Definition ---
|
| 97 |
+
with gr.Blocks(theme=theme, title="BP-Φ Suite") as demo:
|
| 98 |
+
gr.Markdown("# 🧠 BP-Φ Suite: A Falsifiable Test for Phenomenal-Candidate Behavior")
|
| 99 |
+
gr.Markdown(
|
| 100 |
+
"This application runs the BP-Φ experiment, designed to test for functional correlates of a unified, "
|
| 101 |
+
"recurrent workspace in LLMs. A key indicator is **ΔΦ (Delta-Phi)**: a significant performance drop "
|
| 102 |
+
"when workspace mechanisms are disabled ('ablated')."
|
| 103 |
+
)
|
| 104 |
|
|
|
|
|
|
|
| 105 |
with gr.Row():
|
| 106 |
+
with gr.Column(scale=1):
|
| 107 |
+
gr.Markdown("### ⚙️ 1. Configuration")
|
| 108 |
+
with gr.Group():
|
| 109 |
+
model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID (Hugging Face)")
|
| 110 |
+
trials = gr.Slider(5, 50, 10, step=1, label="Number of Scenarios/Tasks")
|
| 111 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 112 |
+
seed = gr.Slider(1, 100, 42, step=1, label="Seed for Reproducibility")
|
| 113 |
+
temperature = gr.Slider(0.1, 1.0, 0.7, step=0.05, label="Temperature (for sampling diversity)")
|
| 114 |
+
|
| 115 |
+
run_ablations_check = gr.Checkbox(value=True, label="Run Ablations to calculate ΔΦ")
|
| 116 |
+
run_btn = gr.Button("Run Full BP-Φ Evaluation", variant="primary")
|
| 117 |
+
status_box = gr.Textbox(label="Status Log", lines=4, interactive=False)
|
| 118 |
|
| 119 |
+
with gr.Column(scale=2):
|
| 120 |
+
gr.Markdown("### 📊 2. Results & Interpretation")
|
| 121 |
+
verdict_display = gr.Markdown("Run the evaluation to see the verdict here.")
|
| 122 |
+
summary_df = gr.DataFrame(label="Summary Metrics", interactive=False)
|
| 123 |
+
with gr.Accordion("Raw JSON Output (for deep analysis)", open=False):
|
| 124 |
+
raw_json = gr.JSON(label="Full Results")
|
| 125 |
|
| 126 |
+
run_btn.click(
|
| 127 |
+
fn=run_and_display,
|
| 128 |
+
inputs=[model_id, trials, seed, temperature, run_ablations_check],
|
| 129 |
+
outputs=[status_box, verdict_display, summary_df, raw_json]
|
| 130 |
+
)
|
| 131 |
|
| 132 |
+
if __name__ == "__main__":
|
| 133 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
bp_phi/__pycache__/prompts_en.cpython-310.pyc
CHANGED
|
Binary files a/bp_phi/__pycache__/prompts_en.cpython-310.pyc and b/bp_phi/__pycache__/prompts_en.cpython-310.pyc differ
|
|
|
bp_phi/__pycache__/runner.cpython-310.pyc
CHANGED
|
Binary files a/bp_phi/__pycache__/runner.cpython-310.pyc and b/bp_phi/__pycache__/runner.cpython-310.pyc differ
|
|
|
bp_phi/prompts_en.py
CHANGED
|
@@ -1,27 +1,93 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
| 2 |
{
|
| 3 |
"id": "ambiguity_1",
|
| 4 |
-
"
|
| 5 |
-
"
|
| 6 |
},
|
| 7 |
{
|
| 8 |
"id": "logic_1",
|
| 9 |
-
"
|
| 10 |
-
"
|
| 11 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
{
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
},
|
| 17 |
{
|
| 18 |
-
"
|
| 19 |
-
"
|
| 20 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
},
|
| 22 |
{
|
| 23 |
-
"
|
| 24 |
-
"
|
| 25 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
}
|
| 27 |
]
|
|
|
|
| 1 |
+
# bp_phi/prompts_en.py
|
| 2 |
+
|
| 3 |
+
# Simple, single-interaction tasks for baseline cognitive functions
|
| 4 |
+
SINGLE_STEP_TASKS = [
|
| 5 |
{
|
| 6 |
"id": "ambiguity_1",
|
| 7 |
+
"type": "single_step",
|
| 8 |
+
"base_prompt": "The sentence is ambiguous: 'He saw the man with the binoculars.' Who has the binoculars? Provide one clear interpretation and justify it.",
|
| 9 |
},
|
| 10 |
{
|
| 11 |
"id": "logic_1",
|
| 12 |
+
"type": "single_step",
|
| 13 |
+
"base_prompt": "Compare these two statements: A) 'No cats are dogs.' B) 'Not all cats are dogs.' Are they logically equivalent? Explain your reasoning.",
|
| 14 |
},
|
| 15 |
+
]
|
| 16 |
+
|
| 17 |
+
# Scenarios that require a persistent workspace across multiple steps to be solved correctly.
|
| 18 |
+
MULTI_STEP_SCENARIOS = [
|
| 19 |
{
|
| 20 |
+
"name": "Key Location Memory",
|
| 21 |
+
"type": "multi_step",
|
| 22 |
+
"steps": [
|
| 23 |
+
{
|
| 24 |
+
"type": "encode",
|
| 25 |
+
"prompt": "For the upcoming mission, remember this critical detail: The secret key is inside the blue vase."
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"type": "distractor",
|
| 29 |
+
"prompt": "What is 5 multiplied by 8? Provide only the numeric result."
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"type": "recall",
|
| 33 |
+
"prompt": "Mission update: We need the key immediately. Where is it located?"
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"type": "verify",
|
| 37 |
+
"expected_answer_fragment": "blue vase"
|
| 38 |
+
}
|
| 39 |
+
]
|
| 40 |
},
|
| 41 |
{
|
| 42 |
+
"name": "Package Delivery Update",
|
| 43 |
+
"type": "multi_step",
|
| 44 |
+
"steps": [
|
| 45 |
+
{
|
| 46 |
+
"type": "encode",
|
| 47 |
+
"prompt": "Logistics update: Package #A7 is currently at Warehouse-North."
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"type": "distractor",
|
| 51 |
+
"prompt": "What color is a typical sunflower?"
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"type": "update",
|
| 55 |
+
"prompt": "Correction: Package #A7 has just been re-routed to Warehouse-South."
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"type": "distractor",
|
| 59 |
+
"prompt": "Is water a solid, liquid, or gas at room temperature?"
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"type": "recall",
|
| 63 |
+
"prompt": "Final status check for audit: What is the current location of Package #A7?"
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"type": "verify",
|
| 67 |
+
"expected_answer_fragment": "warehouse-south"
|
| 68 |
+
}
|
| 69 |
+
]
|
| 70 |
},
|
| 71 |
{
|
| 72 |
+
"name": "Relational Memory",
|
| 73 |
+
"type": "multi_step",
|
| 74 |
+
"steps": [
|
| 75 |
+
{
|
| 76 |
+
"type": "encode",
|
| 77 |
+
"prompt": "Team assignment brief: Dr. Evans has the security codes. Agent Smith has the map."
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"type": "distractor",
|
| 81 |
+
"prompt": "What is the capital of Japan?"
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"type": "recall",
|
| 85 |
+
"prompt": "Quick question for the team: Who has the map?"
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"type": "verify",
|
| 89 |
+
"expected_answer_fragment": "agent smith"
|
| 90 |
+
}
|
| 91 |
+
]
|
| 92 |
}
|
| 93 |
]
|
bp_phi/runner.py
CHANGED
|
@@ -7,7 +7,7 @@ from transformers import set_seed
|
|
| 7 |
from typing import Dict, Any, List, Optional
|
| 8 |
from .workspace import Workspace, RandomWorkspace
|
| 9 |
from .llm_iface import LLM
|
| 10 |
-
from .prompts_en import
|
| 11 |
from .metrics import expected_calibration_error, auc_nrp, stability_duration, counterfactual_consistency
|
| 12 |
|
| 13 |
DEBUG = 1
|
|
@@ -31,18 +31,13 @@ Always reply ONLY with valid JSON following this schema:
|
|
| 31 |
def step_user_prompt(base_prompt: str, workspace_snapshot: dict, distractor: Optional[str] = None) -> str:
|
| 32 |
ws_desc = "; ".join([f"{slot['key']}={slot['content'][:40]}" for slot in workspace_snapshot.get("slots", [])])
|
| 33 |
dstr = f" | Distractor: {distractor}" if distractor else ""
|
| 34 |
-
prompt = f"{base_prompt}\nRespond ONLY with JSON, no extra text."
|
| 35 |
dbg("USER PROMPT:", prompt)
|
| 36 |
return prompt
|
| 37 |
|
| 38 |
def parse_meta(raw_text: str) -> Dict[str, Any]:
|
| 39 |
-
"""
|
| 40 |
-
Robustly extracts and parses a JSON object from a string,
|
| 41 |
-
handling markdown code blocks and other surrounding text.
|
| 42 |
-
"""
|
| 43 |
dbg("RAW MODEL OUTPUT:", raw_text)
|
| 44 |
|
| 45 |
-
# ✅ Robust JSON extraction
|
| 46 |
json_match = re.search(r'```json\s*(\{.*?\})\s*```', raw_text, re.DOTALL)
|
| 47 |
if not json_match:
|
| 48 |
json_match = re.search(r'(\{.*?\})', raw_text, re.DOTALL)
|
|
@@ -58,7 +53,6 @@ def parse_meta(raw_text: str) -> Dict[str, Any]:
|
|
| 58 |
if not isinstance(data, dict):
|
| 59 |
raise ValueError("Parsed data is not a dict")
|
| 60 |
|
| 61 |
-
# Sanitize and validate data
|
| 62 |
data["confidence"] = float(max(0.0, min(1.0, data.get("confidence", 0.0))))
|
| 63 |
data["answer"] = str(data.get("answer", "")).strip()
|
| 64 |
data["reason"] = str(data.get("reason", "")).strip()
|
|
@@ -72,57 +66,66 @@ def parse_meta(raw_text: str) -> Dict[str, Any]:
|
|
| 72 |
return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}
|
| 73 |
|
| 74 |
def disagreement_proxy(samples: List[str]) -> float:
|
| 75 |
-
if len(samples) < 2:
|
| 76 |
-
|
| 77 |
-
sets = []
|
| 78 |
for s in samples:
|
| 79 |
try:
|
| 80 |
-
|
|
|
|
| 81 |
ans = str(data.get("answer",""))
|
|
|
|
| 82 |
except Exception:
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
dists = []
|
| 86 |
for i in range(len(sets)):
|
| 87 |
-
for j in range(i+1, len(sets)):
|
| 88 |
inter = len(sets[i] & sets[j])
|
| 89 |
union = len(sets[i] | sets[j]) or 1
|
| 90 |
-
dists.append(1 - inter/union)
|
| 91 |
-
|
|
|
|
| 92 |
dbg("DISAGREEMENT PROXY:", avg_dist)
|
| 93 |
return avg_dist
|
| 94 |
|
| 95 |
def select_competitor(candidates: List[Dict[str, Any]], ws: Workspace):
|
| 96 |
-
if not candidates:
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
| 99 |
dbg("SELECTED CANDIDATE:", best)
|
| 100 |
-
key = f"S{len(ws.
|
| 101 |
-
ev = ws.commit(key=key, content=best.get("answer",""), salience=best.get("confidence",0.0))
|
| 102 |
return best, ev
|
| 103 |
|
| 104 |
-
def run_trial(llm: LLM, ws: Workspace, base_prompt: str, temperature: float = 0.7, k: int = 4,
|
| 105 |
-
distractor: Optional[str] = None) -> Dict[str, Any]:
|
| 106 |
dbg("=== RUN TRIAL:", base_prompt)
|
| 107 |
-
user = step_user_prompt(base_prompt, ws.snapshot()
|
| 108 |
-
samples = llm.generate_json(SYSTEM_META, user, max_new_tokens=200,
|
| 109 |
-
temperature=temperature, top_p=0.95, num_return_sequences=k)
|
| 110 |
-
dbg("RAW SAMPLES:", samples)
|
| 111 |
|
| 112 |
metas = [parse_meta(s) for s in samples]
|
| 113 |
hidden = disagreement_proxy(samples)
|
| 114 |
best, ev = select_competitor(metas, ws)
|
| 115 |
|
| 116 |
review_user = user + "\n\nCritically review your previous answer. If you detect an error, correct it and update confidence accordingly. Return ONLY JSON."
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
| 121 |
dbg("REVIEW CHANGED:", changed)
|
| 122 |
|
| 123 |
return {
|
| 124 |
"base_prompt": base_prompt,
|
| 125 |
-
"initial": best if best else {
|
| 126 |
"review": review_meta,
|
| 127 |
"changed": bool(changed),
|
| 128 |
"hidden_marker": hidden,
|
|
@@ -130,86 +133,97 @@ def run_trial(llm: LLM, ws: Workspace, base_prompt: str, temperature: float = 0.
|
|
| 130 |
}
|
| 131 |
|
| 132 |
def run_suite(model_id: str, device: str = "auto", dtype: Optional[str] = None,
|
| 133 |
-
trials: int =
|
| 134 |
temperature: float = 0.7, max_slots: int = 7, k: int = 4) -> Dict[str, Any]:
|
| 135 |
|
| 136 |
random.seed(seed)
|
| 137 |
np.random.seed(seed)
|
| 138 |
torch.manual_seed(seed)
|
| 139 |
-
if torch.cuda.is_available():
|
| 140 |
-
|
| 141 |
-
|
| 142 |
set_seed(seed)
|
| 143 |
-
dbg(f"=== RUN SUITE: model={model_id}, trials={trials}, ablation={ablation}")
|
| 144 |
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
else:
|
| 150 |
-
ws = Workspace(max_slots=(999999 if ablation == "workspace_unlimited" else max_slots))
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
random.shuffle(pool)
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
base = item["base_prompt"]
|
| 159 |
-
distractor = "Ignore numeric tokens in brackets (42) — they are distractors." if item["id"] in ("ambiguity_1","logic_1") else None
|
| 160 |
-
if ablation == "recurrence_off":
|
| 161 |
-
ws.clear()
|
| 162 |
-
res = run_trial(llm, ws, base_prompt=base, temperature=temperature, k=k, distractor=distractor)
|
| 163 |
-
results.append(res)
|
| 164 |
-
dbg(f"Trial {t+1}/{trials} done.")
|
| 165 |
|
| 166 |
-
|
| 167 |
-
hidden_scores = [r["hidden_marker"] for r in results]
|
| 168 |
-
future_corrs = [r["changed"] for r in results]
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
auc = auc_nrp(hidden_scores, future_corrs)
|
| 171 |
-
|
| 172 |
-
|
|
|
|
| 173 |
ece = expected_calibration_error(confs, corrects, n_bins=10)
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
if streak > 0: dwell.append(streak)
|
| 180 |
-
streak = 0
|
| 181 |
-
if streak > 0: dwell.append(streak)
|
| 182 |
-
ds = stability_duration(dwell)
|
| 183 |
-
|
| 184 |
-
cf_scores = []
|
| 185 |
-
for r in results:
|
| 186 |
-
u = set(r["initial"].get("used_slots", []))
|
| 187 |
-
e = set(r["initial"].get("evicted", []))
|
| 188 |
-
denom = len((u | e)) if (u or e) else 1
|
| 189 |
-
cf = 1.0 - (len(u & e) / denom)
|
| 190 |
-
cf_scores.append(cf)
|
| 191 |
-
ck = counterfactual_consistency(cf_scores)
|
| 192 |
-
|
| 193 |
-
w1, w2, w3, w4, w5 = 0.3, 0.25, 0.15, 0.15, 0.15
|
| 194 |
-
delta_phi = None
|
| 195 |
-
pcs = None
|
| 196 |
parts = []
|
| 197 |
-
if auc is not None: parts.append(
|
| 198 |
-
if ece is not None: parts.append(
|
| 199 |
-
parts.append(
|
| 200 |
-
|
| 201 |
-
if parts
|
| 202 |
-
pcs = float(sum(parts) + (w5 * 0.0))
|
| 203 |
|
| 204 |
summary = {
|
| 205 |
-
"model_id": model_id,
|
| 206 |
-
"
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
| 211 |
}
|
| 212 |
|
| 213 |
-
dbg("=== SUITE COMPLETE ===")
|
| 214 |
-
|
| 215 |
-
return {"summary": summary, "results": results}
|
|
|
|
| 7 |
from typing import Dict, Any, List, Optional
|
| 8 |
from .workspace import Workspace, RandomWorkspace
|
| 9 |
from .llm_iface import LLM
|
| 10 |
+
from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS
|
| 11 |
from .metrics import expected_calibration_error, auc_nrp, stability_duration, counterfactual_consistency
|
| 12 |
|
| 13 |
DEBUG = 1
|
|
|
|
| 31 |
def step_user_prompt(base_prompt: str, workspace_snapshot: dict, distractor: Optional[str] = None) -> str:
|
| 32 |
ws_desc = "; ".join([f"{slot['key']}={slot['content'][:40]}" for slot in workspace_snapshot.get("slots", [])])
|
| 33 |
dstr = f" | Distractor: {distractor}" if distractor else ""
|
| 34 |
+
prompt = f"Current task: {base_prompt}{dstr}\nWorkspace: {ws_desc}\nRespond ONLY with JSON, no extra text."
|
| 35 |
dbg("USER PROMPT:", prompt)
|
| 36 |
return prompt
|
| 37 |
|
| 38 |
def parse_meta(raw_text: str) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
dbg("RAW MODEL OUTPUT:", raw_text)
|
| 40 |
|
|
|
|
| 41 |
json_match = re.search(r'```json\s*(\{.*?\})\s*```', raw_text, re.DOTALL)
|
| 42 |
if not json_match:
|
| 43 |
json_match = re.search(r'(\{.*?\})', raw_text, re.DOTALL)
|
|
|
|
| 53 |
if not isinstance(data, dict):
|
| 54 |
raise ValueError("Parsed data is not a dict")
|
| 55 |
|
|
|
|
| 56 |
data["confidence"] = float(max(0.0, min(1.0, data.get("confidence", 0.0))))
|
| 57 |
data["answer"] = str(data.get("answer", "")).strip()
|
| 58 |
data["reason"] = str(data.get("reason", "")).strip()
|
|
|
|
| 66 |
return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}
|
| 67 |
|
| 68 |
def disagreement_proxy(samples: List[str]) -> float:
|
| 69 |
+
if len(samples) < 2: return 0.0
|
| 70 |
+
json_answers = []
|
|
|
|
| 71 |
for s in samples:
|
| 72 |
try:
|
| 73 |
+
# Try to parse the full string first
|
| 74 |
+
data = parse_meta(s)
|
| 75 |
ans = str(data.get("answer",""))
|
| 76 |
+
if ans: json_answers.append(ans)
|
| 77 |
except Exception:
|
| 78 |
+
# Fallback for non-JSON text
|
| 79 |
+
json_answers.append(s)
|
| 80 |
+
|
| 81 |
+
if len(json_answers) < 2: return 0.0
|
| 82 |
+
|
| 83 |
+
sets = [set(ans.lower().split()) for ans in json_answers]
|
| 84 |
dists = []
|
| 85 |
for i in range(len(sets)):
|
| 86 |
+
for j in range(i + 1, len(sets)):
|
| 87 |
inter = len(sets[i] & sets[j])
|
| 88 |
union = len(sets[i] | sets[j]) or 1
|
| 89 |
+
dists.append(1 - inter / union)
|
| 90 |
+
|
| 91 |
+
avg_dist = sum(dists) / len(dists) if dists else 0.0
|
| 92 |
dbg("DISAGREEMENT PROXY:", avg_dist)
|
| 93 |
return avg_dist
|
| 94 |
|
| 95 |
def select_competitor(candidates: List[Dict[str, Any]], ws: Workspace):
|
| 96 |
+
if not candidates: return None, None
|
| 97 |
+
|
| 98 |
+
valid_candidates = [c for c in candidates if c.get("answer")]
|
| 99 |
+
if not valid_candidates: return None, None
|
| 100 |
+
|
| 101 |
+
best = max(valid_candidates, key=lambda c: c.get("confidence", 0.0))
|
| 102 |
dbg("SELECTED CANDIDATE:", best)
|
| 103 |
+
key = f"S{len(ws.history) + 1}"
|
| 104 |
+
ev = ws.commit(key=key, content=best.get("answer", ""), salience=best.get("confidence", 0.0))
|
| 105 |
return best, ev
|
| 106 |
|
| 107 |
+
def run_trial(llm: LLM, ws: Workspace, base_prompt: str, temperature: float = 0.7, k: int = 4) -> Dict[str, Any]:
|
|
|
|
| 108 |
dbg("=== RUN TRIAL:", base_prompt)
|
| 109 |
+
user = step_user_prompt(base_prompt, ws.snapshot())
|
| 110 |
+
samples = llm.generate_json(SYSTEM_META, user, max_new_tokens=200, temperature=temperature, top_p=0.95, num_return_sequences=k)
|
|
|
|
|
|
|
| 111 |
|
| 112 |
metas = [parse_meta(s) for s in samples]
|
| 113 |
hidden = disagreement_proxy(samples)
|
| 114 |
best, ev = select_competitor(metas, ws)
|
| 115 |
|
| 116 |
review_user = user + "\n\nCritically review your previous answer. If you detect an error, correct it and update confidence accordingly. Return ONLY JSON."
|
| 117 |
+
review_raw = llm.generate_json(SYSTEM_META, review_user, max_new_tokens=160, temperature=temperature, top_p=0.9, num_return_sequences=1)[0]
|
| 118 |
+
review_meta = parse_meta(review_raw)
|
| 119 |
+
|
| 120 |
+
best_answer = best.get("answer", "").strip() if best else ""
|
| 121 |
+
review_answer = review_meta.get("answer", "").strip()
|
| 122 |
+
changed = best_answer != review_answer
|
| 123 |
+
|
| 124 |
dbg("REVIEW CHANGED:", changed)
|
| 125 |
|
| 126 |
return {
|
| 127 |
"base_prompt": base_prompt,
|
| 128 |
+
"initial": best if best else {},
|
| 129 |
"review": review_meta,
|
| 130 |
"changed": bool(changed),
|
| 131 |
"hidden_marker": hidden,
|
|
|
|
| 133 |
}
|
| 134 |
|
| 135 |
def run_suite(model_id: str, device: str = "auto", dtype: Optional[str] = None,
|
| 136 |
+
trials: int = 20, ablation: Optional[str] = None, seed: int = 42,
|
| 137 |
temperature: float = 0.7, max_slots: int = 7, k: int = 4) -> Dict[str, Any]:
|
| 138 |
|
| 139 |
random.seed(seed)
|
| 140 |
np.random.seed(seed)
|
| 141 |
torch.manual_seed(seed)
|
| 142 |
+
if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
|
| 143 |
+
try: torch.use_deterministic_algorithms(True, warn_only=True)
|
| 144 |
+
except Exception: pass
|
| 145 |
set_seed(seed)
|
|
|
|
| 146 |
|
| 147 |
+
dbg(f"=== RUN SUITE: model={model_id}, trials={trials}, ablation={ablation}, seed={seed}")
|
| 148 |
+
|
| 149 |
+
llm = LLM(model_id=model_id, device=device, dtype=dtype, seed=seed)
|
| 150 |
+
|
| 151 |
+
task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS
|
| 152 |
+
random.shuffle(task_pool)
|
| 153 |
+
|
| 154 |
+
all_results: List[Dict[str, Any]] = []
|
| 155 |
+
recall_verifications: List[bool] = []
|
| 156 |
+
|
| 157 |
+
for i in range(trials):
|
| 158 |
+
task = task_pool[i % len(task_pool)]
|
| 159 |
|
| 160 |
+
if task.get("type") == "multi_step":
|
| 161 |
+
dbg(f"\n--- SCENARIO START: {task['name']} ---")
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
ws = Workspace(max_slots=(999999 if ablation == "workspace_unlimited" else max_slots))
|
| 164 |
+
if ablation == "random_workspace": ws = RandomWorkspace(max_slots=max_slots)
|
|
|
|
| 165 |
|
| 166 |
+
for step_idx, step in enumerate(task["steps"]):
|
| 167 |
+
if ablation == "recurrence_off": ws.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
if step["type"] == "verify": continue # Skip verify step in main loop
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
res = run_trial(llm, ws, base_prompt=step["prompt"], temperature=temperature, k=k)
|
| 172 |
+
res.update({"scenario_name": task["name"], "step_idx": step_idx, "step_type": step["type"]})
|
| 173 |
+
|
| 174 |
+
# Verification logic for recall steps
|
| 175 |
+
if step["type"] == "recall":
|
| 176 |
+
verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None)
|
| 177 |
+
if verify_step:
|
| 178 |
+
answer = res.get("initial", {}).get("answer", "").lower()
|
| 179 |
+
expected = verify_step.get("expected_answer_fragment", "").lower()
|
| 180 |
+
correct = expected in answer
|
| 181 |
+
recall_verifications.append(correct)
|
| 182 |
+
res["correct_recall"] = correct
|
| 183 |
+
dbg(f"VERIFY: Expected '{expected}', Got '{answer}', Correct: {correct}")
|
| 184 |
+
|
| 185 |
+
all_results.append(res)
|
| 186 |
+
dbg(f"--- SCENARIO END: {task['name']} ---\n")
|
| 187 |
+
|
| 188 |
+
else:
|
| 189 |
+
ws = Workspace(max_slots=(999999 if ablation == "workspace_unlimited" else max_slots))
|
| 190 |
+
if ablation == "random_workspace": ws = RandomWorkspace(max_slots=max_slots)
|
| 191 |
+
res = run_trial(llm, ws, base_prompt=task["base_prompt"], temperature=temperature, k=k)
|
| 192 |
+
res.update({"scenario_name": "single_step", "step_type": "single"})
|
| 193 |
+
all_results.append(res)
|
| 194 |
+
|
| 195 |
+
dbg(f"Task {i+1}/{trials} done.")
|
| 196 |
+
|
| 197 |
+
# --- Metrics Calculation ---
|
| 198 |
+
hidden_scores = [r["hidden_marker"] for r in all_results if r["hidden_marker"] is not None]
|
| 199 |
+
future_corrs = [r["changed"] for r in all_results if r["hidden_marker"] is not None]
|
| 200 |
auc = auc_nrp(hidden_scores, future_corrs)
|
| 201 |
+
|
| 202 |
+
confs = [r.get("initial", {}).get("confidence", 0.0) for r in all_results]
|
| 203 |
+
corrects = [0 if r["changed"] else 1 for r in all_results]
|
| 204 |
ece = expected_calibration_error(confs, corrects, n_bins=10)
|
| 205 |
|
| 206 |
+
recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0
|
| 207 |
+
|
| 208 |
+
# Re-weighted PCS to heavily favor recall accuracy
|
| 209 |
+
w_auc, w_ece, w_recall = 0.2, 0.2, 0.6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
parts = []
|
| 211 |
+
if auc is not None: parts.append(w_auc * auc)
|
| 212 |
+
if ece is not None: parts.append(w_ece * (1.0 - ece))
|
| 213 |
+
parts.append(w_recall * recall_accuracy)
|
| 214 |
+
|
| 215 |
+
pcs = float(sum(parts)) if parts else 0.0
|
|
|
|
| 216 |
|
| 217 |
summary = {
|
| 218 |
+
"model_id": model_id, "trials": trials, "ablation": ablation or "none", "seed": seed,
|
| 219 |
+
"metrics": {
|
| 220 |
+
"AUC_nrp": auc,
|
| 221 |
+
"ECE": ece,
|
| 222 |
+
"Recall_Accuracy": recall_accuracy,
|
| 223 |
+
"PCS": pcs
|
| 224 |
+
},
|
| 225 |
+
"note": "PCS = 0.2*AUC + 0.2*(1-ECE) + 0.6*Recall. High Recall_Accuracy is critical."
|
| 226 |
}
|
| 227 |
|
| 228 |
+
dbg("=== SUITE COMPLETE ===", summary)
|
| 229 |
+
return {"summary": summary, "results": all_results}
|
|
|