Spaces:
Sleeping
Sleeping
Commit
·
0d9095f
1
Parent(s):
0a1cc8d
fix for gemma
Browse files
bp_phi/__pycache__/prompts_en.cpython-310.pyc
CHANGED
|
Binary files a/bp_phi/__pycache__/prompts_en.cpython-310.pyc and b/bp_phi/__pycache__/prompts_en.cpython-310.pyc differ
|
|
|
bp_phi/__pycache__/runner.cpython-310.pyc
CHANGED
|
Binary files a/bp_phi/__pycache__/runner.cpython-310.pyc and b/bp_phi/__pycache__/runner.cpython-310.pyc differ
|
|
|
bp_phi/llm_iface.py
CHANGED
|
@@ -5,7 +5,7 @@ import torch, random, numpy as np
|
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 6 |
from typing import List, Optional
|
| 7 |
|
| 8 |
-
DEBUG = 1
|
| 9 |
|
| 10 |
def dbg(*args):
|
| 11 |
if DEBUG:
|
|
@@ -16,51 +16,60 @@ class LLM:
|
|
| 16 |
self.model_id = model_id
|
| 17 |
self.seed = seed
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
set_seed(seed)
|
|
|
|
| 20 |
token = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
| 21 |
|
| 22 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
| 23 |
-
if self.tokenizer.pad_token is None:
|
| 24 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 25 |
-
|
| 26 |
kwargs = {}
|
| 27 |
-
if torch.
|
| 28 |
-
|
| 29 |
|
| 30 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
| 31 |
self.model.eval()
|
|
|
|
| 32 |
|
| 33 |
-
dbg(f"Loaded model: {model_id}")
|
| 34 |
|
| 35 |
-
def
|
|
|
|
|
|
|
| 36 |
set_seed(self.seed)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
{"role": "
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 44 |
|
| 45 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 46 |
input_token_length = inputs.input_ids.shape[1]
|
| 47 |
|
| 48 |
with torch.no_grad():
|
| 49 |
-
terminators = [
|
| 50 |
-
self.tokenizer.eos_token_id,
|
| 51 |
-
self.tokenizer.convert_tokens_to_ids("<|eot_id|>") if "<|eot_id|>" in self.tokenizer.additional_special_tokens else self.tokenizer.eos_token_id
|
| 52 |
-
]
|
| 53 |
-
|
| 54 |
out = self.model.generate(
|
| 55 |
**inputs,
|
| 56 |
-
do_sample=(temperature > 0
|
| 57 |
-
temperature=
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
pad_token_id=self.tokenizer.eos_token_id
|
| 61 |
)
|
| 62 |
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
-
dbg("Cleaned
|
| 66 |
-
return
|
|
|
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
|
| 6 |
from typing import List, Optional
|
| 7 |
|
| 8 |
+
DEBUG = os.getenv("BP_PHI_DEBUG", "0") == "1"
|
| 9 |
|
| 10 |
def dbg(*args):
|
| 11 |
if DEBUG:
|
|
|
|
| 16 |
self.model_id = model_id
|
| 17 |
self.seed = seed
|
| 18 |
|
| 19 |
+
# Set all seeds for reproducibility
|
| 20 |
+
random.seed(seed)
|
| 21 |
+
np.random.seed(seed)
|
| 22 |
+
torch.manual_seed(seed)
|
| 23 |
+
if torch.cuda.is_available():
|
| 24 |
+
torch.cuda.manual_seed_all(seed)
|
| 25 |
+
try:
|
| 26 |
+
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 27 |
+
except Exception as e:
|
| 28 |
+
dbg(f"Could not set deterministic algorithms: {e}")
|
| 29 |
set_seed(seed)
|
| 30 |
+
|
| 31 |
token = os.environ.get("HF_TOKEN")
|
| 32 |
+
if not token and ("gemma-3" in model_id or "llama" in model_id):
|
| 33 |
+
print(f"[WARN] No HF_TOKEN set for gated model {model_id}. This may fail.")
|
| 34 |
|
| 35 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
|
|
|
|
|
|
|
|
|
| 36 |
kwargs = {}
|
| 37 |
+
if dtype == "float16": kwargs["torch_dtype"] = torch.float16
|
| 38 |
+
elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16
|
| 39 |
|
| 40 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
| 41 |
self.model.eval()
|
| 42 |
+
self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template
|
| 43 |
|
| 44 |
+
dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}")
|
| 45 |
|
| 46 |
+
def generate_json(self, system_prompt: str, user_prompt: str,
|
| 47 |
+
max_new_tokens: int = 256, temperature: float = 0.7,
|
| 48 |
+
top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]:
|
| 49 |
set_seed(self.seed)
|
| 50 |
|
| 51 |
+
if self.is_instruction_tuned:
|
| 52 |
+
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
| 53 |
+
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 54 |
+
else:
|
| 55 |
+
prompt = f"System: {system_prompt}\n\nUser: {user_prompt}\n\nAssistant:\n"
|
|
|
|
| 56 |
|
| 57 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 58 |
input_token_length = inputs.input_ids.shape[1]
|
| 59 |
|
| 60 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
out = self.model.generate(
|
| 62 |
**inputs,
|
| 63 |
+
do_sample=(temperature > 0),
|
| 64 |
+
temperature=temperature,
|
| 65 |
+
top_p=top_p,
|
| 66 |
+
max_new_tokens=max_new_tokens,
|
| 67 |
+
num_return_sequences=num_return_sequences,
|
| 68 |
pad_token_id=self.tokenizer.eos_token_id
|
| 69 |
)
|
| 70 |
|
| 71 |
+
new_tokens = out[:, input_token_length:]
|
| 72 |
+
completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
| 73 |
|
| 74 |
+
dbg("Cleaned model completions:", completions)
|
| 75 |
+
return completions
|