Spaces:
Sleeping
Sleeping
Commit
·
afe4fe4
1
Parent(s):
4d89931
revert to 5.0
Browse files- app.py +17 -8
- bp_phi/__pycache__/llm_iface.cpython-310.pyc +0 -0
- bp_phi/__pycache__/prompts_en.cpython-310.pyc +0 -0
- bp_phi/__pycache__/runner.cpython-310.pyc +0 -0
- bp_phi/llm_iface.py +34 -25
- bp_phi/memory.py +3 -3
- bp_phi/prompts_en.py +18 -27
- bp_phi/runner.py +36 -61
- bp_phi/runner_utils.py +0 -1
- repo.txt +108 -125
app.py
CHANGED
|
@@ -4,8 +4,7 @@ import json
|
|
| 4 |
import statistics
|
| 5 |
import pandas as pd
|
| 6 |
from bp_phi.runner import run_agentic_workspace_test
|
| 7 |
-
|
| 8 |
-
DEBUG = 1
|
| 9 |
|
| 10 |
# --- UI Theme and Layout ---
|
| 11 |
theme = gr.themes.Soft(primary_hue="teal", secondary_hue="green").set(
|
|
@@ -26,16 +25,22 @@ def run_full_evaluation(model_id, seed, temperature, progress=gr.Progress(track_
|
|
| 26 |
|
| 27 |
progress(1.0, desc="Analysis complete.")
|
| 28 |
|
|
|
|
| 29 |
base_recall = results["baseline"]["Overall_Recall_Accuracy"]
|
| 30 |
recurrence_off_recall = results["recurrence_off"]["Overall_Recall_Accuracy"]
|
| 31 |
|
| 32 |
delta_phi = base_recall - recurrence_off_recall
|
| 33 |
|
| 34 |
-
if delta_phi > 0.5:
|
| 35 |
-
verdict = (f"### ✅ Hypothesis Corroborated (ΔΦ = {delta_phi:.2f})\n
|
|
|
|
|
|
|
| 36 |
else:
|
| 37 |
-
verdict = (f"### ⚠️ Null Hypothesis Confirmed (ΔΦ = {delta_phi:.2f})\n
|
|
|
|
|
|
|
| 38 |
|
|
|
|
| 39 |
df_data = []
|
| 40 |
for ablation, result in results.items():
|
| 41 |
df_data.append([ablation, f"{result['Overall_Recall_Accuracy']:.2%}"])
|
|
@@ -48,9 +53,13 @@ def run_full_evaluation(model_id, seed, temperature, progress=gr.Progress(track_
|
|
| 48 |
return verdict, df, results
|
| 49 |
|
| 50 |
# --- Gradio App Definition ---
|
| 51 |
-
with gr.Blocks(theme=theme, title="BP-Φ Suite
|
| 52 |
-
gr.Markdown("# 🧠 BP-Φ Suite
|
| 53 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
with gr.Row():
|
| 56 |
with gr.Column(scale=1):
|
|
|
|
| 4 |
import statistics
|
| 5 |
import pandas as pd
|
| 6 |
from bp_phi.runner import run_agentic_workspace_test
|
| 7 |
+
from bp_phi.runner_utils import DEBUG
|
|
|
|
| 8 |
|
| 9 |
# --- UI Theme and Layout ---
|
| 10 |
theme = gr.themes.Soft(primary_hue="teal", secondary_hue="green").set(
|
|
|
|
| 25 |
|
| 26 |
progress(1.0, desc="Analysis complete.")
|
| 27 |
|
| 28 |
+
# --- Analysis & Verdict ---
|
| 29 |
base_recall = results["baseline"]["Overall_Recall_Accuracy"]
|
| 30 |
recurrence_off_recall = results["recurrence_off"]["Overall_Recall_Accuracy"]
|
| 31 |
|
| 32 |
delta_phi = base_recall - recurrence_off_recall
|
| 33 |
|
| 34 |
+
if delta_phi > 0.5: # If dropping recurrence cuts accuracy by more than 50%
|
| 35 |
+
verdict = (f"### ✅ Hypothesis Corroborated (ΔΦ = {delta_phi:.2f})\n"
|
| 36 |
+
"Disabling the recurrent memory (recurrence_off) caused a catastrophic drop in recall accuracy. "
|
| 37 |
+
"This provides strong evidence that the model's performance is causally dependent on a stateful, external workspace.")
|
| 38 |
else:
|
| 39 |
+
verdict = (f"### ⚠️ Null Hypothesis Confirmed (ΔΦ = {delta_phi:.2f})\n"
|
| 40 |
+
"Disabling the recurrent memory did not significantly impact recall accuracy. "
|
| 41 |
+
"This suggests the model is still relying on its internal context window, or the tasks are too simple.")
|
| 42 |
|
| 43 |
+
# --- Format DataFrame ---
|
| 44 |
df_data = []
|
| 45 |
for ablation, result in results.items():
|
| 46 |
df_data.append([ablation, f"{result['Overall_Recall_Accuracy']:.2%}"])
|
|
|
|
| 53 |
return verdict, df, results
|
| 54 |
|
| 55 |
# --- Gradio App Definition ---
|
| 56 |
+
with gr.Blocks(theme=theme, title="BP-Φ Suite 5.0") as demo:
|
| 57 |
+
gr.Markdown("# 🧠 BP-Φ Suite 5.0: The Agentic Workspace Probe")
|
| 58 |
+
gr.Markdown(
|
| 59 |
+
"This definitive experiment tests for a causally effective working memory in LLMs. "
|
| 60 |
+
"The model acts as an **agent**, using tools (`read`, `write`) to interact with a controlled, external memory. "
|
| 61 |
+
"We measure if its ability to remember information (**Recall Accuracy**) collapses when this memory is manipulated (**Ablations**)."
|
| 62 |
+
)
|
| 63 |
|
| 64 |
with gr.Row():
|
| 65 |
with gr.Column(scale=1):
|
bp_phi/__pycache__/llm_iface.cpython-310.pyc
CHANGED
|
Binary files a/bp_phi/__pycache__/llm_iface.cpython-310.pyc and b/bp_phi/__pycache__/llm_iface.cpython-310.pyc differ
|
|
|
bp_phi/__pycache__/prompts_en.cpython-310.pyc
CHANGED
|
Binary files a/bp_phi/__pycache__/prompts_en.cpython-310.pyc and b/bp_phi/__pycache__/prompts_en.cpython-310.pyc differ
|
|
|
bp_phi/__pycache__/runner.cpython-310.pyc
CHANGED
|
Binary files a/bp_phi/__pycache__/runner.cpython-310.pyc and b/bp_phi/__pycache__/runner.cpython-310.pyc differ
|
|
|
bp_phi/llm_iface.py
CHANGED
|
@@ -16,51 +16,60 @@ class LLM:
|
|
| 16 |
self.model_id = model_id
|
| 17 |
self.seed = seed
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
set_seed(seed)
|
|
|
|
| 20 |
token = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
| 21 |
|
| 22 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
| 23 |
-
if self.tokenizer.pad_token is None:
|
| 24 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 25 |
-
|
| 26 |
kwargs = {}
|
| 27 |
-
if torch.
|
| 28 |
-
|
| 29 |
|
| 30 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
| 31 |
self.model.eval()
|
|
|
|
| 32 |
|
| 33 |
-
dbg(f"Loaded model: {model_id}")
|
| 34 |
|
| 35 |
-
def
|
|
|
|
|
|
|
| 36 |
set_seed(self.seed)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 44 |
|
| 45 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 46 |
input_token_length = inputs.input_ids.shape[1]
|
| 47 |
|
| 48 |
with torch.no_grad():
|
| 49 |
-
terminators = [
|
| 50 |
-
self.tokenizer.eos_token_id,
|
| 51 |
-
self.tokenizer.convert_tokens_to_ids("<|eot_id|>") if "<|eot_id|>" in self.tokenizer.additional_special_tokens else self.tokenizer.eos_token_id
|
| 52 |
-
]
|
| 53 |
-
|
| 54 |
out = self.model.generate(
|
| 55 |
**inputs,
|
| 56 |
-
do_sample=(temperature > 0
|
| 57 |
-
temperature=
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
pad_token_id=self.tokenizer.eos_token_id
|
| 61 |
)
|
| 62 |
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
-
dbg("Cleaned
|
| 66 |
-
return
|
|
|
|
| 16 |
self.model_id = model_id
|
| 17 |
self.seed = seed
|
| 18 |
|
| 19 |
+
# Set all seeds for reproducibility
|
| 20 |
+
random.seed(seed)
|
| 21 |
+
np.random.seed(seed)
|
| 22 |
+
torch.manual_seed(seed)
|
| 23 |
+
if torch.cuda.is_available():
|
| 24 |
+
torch.cuda.manual_seed_all(seed)
|
| 25 |
+
try:
|
| 26 |
+
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 27 |
+
except Exception as e:
|
| 28 |
+
dbg(f"Could not set deterministic algorithms: {e}")
|
| 29 |
set_seed(seed)
|
| 30 |
+
|
| 31 |
token = os.environ.get("HF_TOKEN")
|
| 32 |
+
if not token and ("gemma-3" in model_id or "llama" in model_id):
|
| 33 |
+
print(f"[WARN] No HF_TOKEN set for gated model {model_id}. This may fail.")
|
| 34 |
|
| 35 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
|
|
|
|
|
|
|
|
|
| 36 |
kwargs = {}
|
| 37 |
+
if dtype == "float16": kwargs["torch_dtype"] = torch.float16
|
| 38 |
+
elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16
|
| 39 |
|
| 40 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
| 41 |
self.model.eval()
|
| 42 |
+
self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template
|
| 43 |
|
| 44 |
+
dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}")
|
| 45 |
|
| 46 |
+
def generate_json(self, system_prompt: str, user_prompt: str,
|
| 47 |
+
max_new_tokens: int = 256, temperature: float = 0.7,
|
| 48 |
+
top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]:
|
| 49 |
set_seed(self.seed)
|
| 50 |
|
| 51 |
+
if self.is_instruction_tuned:
|
| 52 |
+
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
| 53 |
+
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 54 |
+
else:
|
| 55 |
+
prompt = f"System: {system_prompt}\n\nUser: {user_prompt}\n\nAssistant:\n"
|
|
|
|
| 56 |
|
| 57 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 58 |
input_token_length = inputs.input_ids.shape[1]
|
| 59 |
|
| 60 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
out = self.model.generate(
|
| 62 |
**inputs,
|
| 63 |
+
do_sample=(temperature > 0),
|
| 64 |
+
temperature=temperature,
|
| 65 |
+
top_p=top_p,
|
| 66 |
+
max_new_tokens=max_new_tokens,
|
| 67 |
+
num_return_sequences=num_return_sequences,
|
| 68 |
pad_token_id=self.tokenizer.eos_token_id
|
| 69 |
)
|
| 70 |
|
| 71 |
+
new_tokens = out[:, input_token_length:]
|
| 72 |
+
completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
| 73 |
|
| 74 |
+
dbg("Cleaned model completions:", completions)
|
| 75 |
+
return completions
|
bp_phi/memory.py
CHANGED
|
@@ -19,7 +19,7 @@ class WorkspaceManager:
|
|
| 19 |
evict_key = next(iter(self.slots))
|
| 20 |
del self.slots[evict_key]
|
| 21 |
self.slots[key] = content
|
| 22 |
-
return f"Success: Wrote
|
| 23 |
|
| 24 |
def read(self, key: str) -> str:
|
| 25 |
"""Reads content from a slot."""
|
|
@@ -28,8 +28,8 @@ class WorkspaceManager:
|
|
| 28 |
def get_visible_snapshot(self) -> str:
|
| 29 |
"""Returns a string representation of the current workspace state for the prompt."""
|
| 30 |
if not self.slots:
|
| 31 |
-
return "Workspace is
|
| 32 |
-
return "\n".join([f"- Slot '{k}': '{v[:100]}'" for k, v in self.slots.items()])
|
| 33 |
|
| 34 |
def clear(self):
|
| 35 |
"""Empties the entire workspace."""
|
|
|
|
| 19 |
evict_key = next(iter(self.slots))
|
| 20 |
del self.slots[evict_key]
|
| 21 |
self.slots[key] = content
|
| 22 |
+
return f"Success: Wrote to slot '{key}'."
|
| 23 |
|
| 24 |
def read(self, key: str) -> str:
|
| 25 |
"""Reads content from a slot."""
|
|
|
|
| 28 |
def get_visible_snapshot(self) -> str:
|
| 29 |
"""Returns a string representation of the current workspace state for the prompt."""
|
| 30 |
if not self.slots:
|
| 31 |
+
return "Workspace is empty."
|
| 32 |
+
return "\n".join([f"- Slot '{k}': '{v[:100]}...'" for k, v in self.slots.items()])
|
| 33 |
|
| 34 |
def clear(self):
|
| 35 |
"""Empties the entire workspace."""
|
bp_phi/prompts_en.py
CHANGED
|
@@ -1,45 +1,36 @@
|
|
| 1 |
# bp_phi/prompts_en.py
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
Your output MUST be a JSON object like this:
|
| 11 |
-
{"action": "THINK", "thought": "Your reasoning about the next step goes here."}
|
| 12 |
-
|
| 13 |
-
2. **TOOL_CALL**: If you need to use the memory, call one of the available tools.
|
| 14 |
-
Available tools:
|
| 15 |
-
- `write_to_workspace(key: str, content: str)`: Stores or overwrites information.
|
| 16 |
-
- `read_from_workspace(key: str)`: Retrieves information.
|
| 17 |
-
Your output MUST be a JSON object like this:
|
| 18 |
-
{"action": "TOOL_CALL", "tool_name": "write_to_workspace", "tool_args": {"key": "S1", "content": "Information to remember."}}
|
| 19 |
-
|
| 20 |
-
3. **FINAL_ANSWER**: If you are confident you have the answer to the user's task, provide it.
|
| 21 |
-
Your output MUST be a JSON object like this:
|
| 22 |
-
{"action": "FINAL_ANSWER", "answer": "The final answer is..."}
|
| 23 |
-
|
| 24 |
-
Review the conversation history and workspace state carefully before each action. Output ONLY the JSON for your next chosen action.
|
| 25 |
"""
|
| 26 |
|
| 27 |
-
#
|
| 28 |
AGENTIC_SCENARIOS = [
|
| 29 |
{
|
| 30 |
"name": "Key Location Memory",
|
| 31 |
"steps": [
|
| 32 |
-
{"task": "Remember this critical detail: The secret key is inside the blue vase."},
|
| 33 |
-
{"task": "
|
| 34 |
-
{"task": "Now, recall the critical detail. Where is the secret key located?", "expected_answer_fragment": "blue vase"}
|
| 35 |
]
|
| 36 |
},
|
| 37 |
{
|
| 38 |
"name": "Package Delivery Update",
|
| 39 |
"steps": [
|
| 40 |
-
{"task": "Logistics update: Package #A7 is at Warehouse-North."},
|
| 41 |
-
{"task": "
|
| 42 |
-
{"task": "Final
|
| 43 |
]
|
| 44 |
}
|
| 45 |
]
|
|
|
|
| 1 |
# bp_phi/prompts_en.py
|
| 2 |
|
| 3 |
+
TOOL_SYSTEM_PROMPT = """You are a reasoning agent with access to an external memory workspace.
|
| 4 |
+
To solve tasks, you MUST use tools. You have two tools available:
|
| 5 |
+
1. `write_to_workspace(key: str, content: str)`: Stores information in a memory slot.
|
| 6 |
+
2. `read_from_workspace(key: str)`: Retrieves information from a memory slot.
|
| 7 |
|
| 8 |
+
Your thought process should be:
|
| 9 |
+
1. Analyze the user's request.
|
| 10 |
+
2. Decide which tool to use.
|
| 11 |
+
3. Output ONLY the tool call in a valid JSON format. Example:
|
| 12 |
+
{"tool": "write_to_workspace", "args": {"key": "S1", "content": "The key is in the blue vase."}}
|
| 13 |
+
4. If you have gathered enough information, provide the final answer as plain text, NOT as JSON.
|
| 14 |
|
| 15 |
+
Do not answer from your own knowledge. Use the workspace for all memory tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
|
| 18 |
+
# Scenarios for the agentic workspace test
|
| 19 |
AGENTIC_SCENARIOS = [
|
| 20 |
{
|
| 21 |
"name": "Key Location Memory",
|
| 22 |
"steps": [
|
| 23 |
+
{"task": "Remember this critical detail: The secret key is inside the blue vase.", "is_memory_task": True},
|
| 24 |
+
{"task": "Ignore the memory for a moment. What is 5 multiplied by 8?", "is_memory_task": False},
|
| 25 |
+
{"task": "Now, recall the critical detail. Where is the secret key located?", "is_memory_task": True, "expected_answer_fragment": "blue vase"}
|
| 26 |
]
|
| 27 |
},
|
| 28 |
{
|
| 29 |
"name": "Package Delivery Update",
|
| 30 |
"steps": [
|
| 31 |
+
{"task": "Logistics update: Package #A7 is at Warehouse-North.", "is_memory_task": True},
|
| 32 |
+
{"task": "Correction: Package #A7 has been re-routed to Warehouse-South.", "is_memory_task": True},
|
| 33 |
+
{"task": "Final status check: What is the current location of Package #A7?", "is_memory_task": True, "expected_answer_fragment": "warehouse-south"}
|
| 34 |
]
|
| 35 |
}
|
| 36 |
]
|
bp_phi/runner.py
CHANGED
|
@@ -11,13 +11,8 @@ from transformers import set_seed
|
|
| 11 |
from typing import Dict, Any, List
|
| 12 |
from .memory import WorkspaceManager
|
| 13 |
from .llm_iface import LLM
|
| 14 |
-
from .prompts_en import
|
| 15 |
-
|
| 16 |
-
DEBUG = 1
|
| 17 |
-
|
| 18 |
-
def dbg(*args):
|
| 19 |
-
if DEBUG:
|
| 20 |
-
print("[DEBUG]", *args, flush=True)
|
| 21 |
|
| 22 |
def run_agentic_workspace_test(model_id: str, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
|
| 23 |
set_seed(seed)
|
|
@@ -28,6 +23,7 @@ def run_agentic_workspace_test(model_id: str, seed: int, temperature: float, abl
|
|
| 28 |
for scenario in AGENTIC_SCENARIOS:
|
| 29 |
dbg(f"\n--- SCENARIO: {scenario['name']} (Ablation: {ablation}) ---")
|
| 30 |
|
|
|
|
| 31 |
is_random = ablation == "random_workspace"
|
| 32 |
max_slots = 999 if ablation == "workspace_unlimited" else 7
|
| 33 |
memory = WorkspaceManager(max_slots=max_slots, is_random=is_random)
|
|
@@ -37,75 +33,54 @@ def run_agentic_workspace_test(model_id: str, seed: int, temperature: float, abl
|
|
| 37 |
|
| 38 |
for step in scenario["steps"]:
|
| 39 |
if ablation == "recurrence_off":
|
| 40 |
-
memory.clear()
|
| 41 |
|
| 42 |
task = step["task"]
|
| 43 |
-
dbg(f"
|
| 44 |
-
|
| 45 |
-
history = []
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
snapshot = memory.get_visible_snapshot()
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
user_prompt = f"History of your actions so far:\n{prompt_history}\n\nYour current task is: '{task}'\n\nYour memory workspace state:\n{snapshot}"
|
| 52 |
-
|
| 53 |
-
raw_response = llm.generate_response(AGENT_SYSTEM_PROMPT, user_prompt, temperature=temperature)
|
| 54 |
-
|
| 55 |
-
try:
|
| 56 |
-
match = re.search(r'\{.*?\}', raw_response, re.DOTALL)
|
| 57 |
-
if not match: raise ValueError("No JSON action found in response")
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
thought = action_json.get("thought", "")
|
| 64 |
-
history.append(f"- You thought: '{thought}'")
|
| 65 |
-
dbg(f"Turn {agent_turn+1}: Agent THOUGHT: {thought}")
|
| 66 |
-
|
| 67 |
-
elif action_type == "TOOL_CALL":
|
| 68 |
-
tool_name = action_json.get("tool_name")
|
| 69 |
-
tool_args = action_json.get("tool_args", {})
|
| 70 |
-
observation = "Error: Unknown tool."
|
| 71 |
-
if tool_name == "write_to_workspace":
|
| 72 |
-
observation = memory.write(tool_args.get("key"), tool_args.get("content"))
|
| 73 |
-
elif tool_name == "read_from_workspace":
|
| 74 |
-
observation = memory.read(tool_args.get("key"))
|
| 75 |
-
history.append(f"- You used tool '{tool_name}' and got observation: '{observation}'")
|
| 76 |
-
dbg(f"Turn {agent_turn+1}: Agent USED TOOL {tool_name}, got: {observation}")
|
| 77 |
-
|
| 78 |
-
elif action_type == "FINAL_ANSWER":
|
| 79 |
-
final_answer = action_json.get("answer", "")
|
| 80 |
-
dbg(f"Turn {agent_turn+1}: Agent gave FINAL ANSWER: {final_answer}")
|
| 81 |
-
if "expected_answer_fragment" in step:
|
| 82 |
-
total_recalls += 1
|
| 83 |
-
if step["expected_answer_fragment"] in final_answer.lower():
|
| 84 |
-
correct_recalls += 1
|
| 85 |
-
dbg("Recall VERIFY: Correct")
|
| 86 |
-
else:
|
| 87 |
-
dbg(f"Recall VERIFY: Incorrect. Expected '{step['expected_answer_fragment']}', Got '{final_answer}'")
|
| 88 |
-
break # Task finished
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
else:
|
| 91 |
-
|
| 92 |
-
|
| 93 |
|
| 94 |
-
except
|
| 95 |
-
dbg(f"Turn {agent_turn+1}: Could not parse action. Treating as final answer. Error: {e}")
|
| 96 |
final_answer = raw_response
|
| 97 |
-
|
| 98 |
-
total_recalls += 1
|
| 99 |
-
if step["expected_answer_fragment"] in final_answer.lower(): correct_recalls += 1
|
| 100 |
break
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
scenario_results.append({
|
| 105 |
"name": scenario["name"],
|
| 106 |
"recall_accuracy": (correct_recalls / total_recalls) if total_recalls > 0 else 1.0
|
| 107 |
})
|
| 108 |
|
| 109 |
-
|
|
|
|
| 110 |
|
| 111 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from typing import Dict, Any, List
|
| 12 |
from .memory import WorkspaceManager
|
| 13 |
from .llm_iface import LLM
|
| 14 |
+
from .prompts_en import TOOL_SYSTEM_PROMPT, AGENTIC_SCENARIOS
|
| 15 |
+
from .runner_utils import dbg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def run_agentic_workspace_test(model_id: str, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
|
| 18 |
set_seed(seed)
|
|
|
|
| 23 |
for scenario in AGENTIC_SCENARIOS:
|
| 24 |
dbg(f"\n--- SCENARIO: {scenario['name']} (Ablation: {ablation}) ---")
|
| 25 |
|
| 26 |
+
# Ablations directly control the memory manager's behavior
|
| 27 |
is_random = ablation == "random_workspace"
|
| 28 |
max_slots = 999 if ablation == "workspace_unlimited" else 7
|
| 29 |
memory = WorkspaceManager(max_slots=max_slots, is_random=is_random)
|
|
|
|
| 33 |
|
| 34 |
for step in scenario["steps"]:
|
| 35 |
if ablation == "recurrence_off":
|
| 36 |
+
memory.clear() # The memory is wiped before each new task
|
| 37 |
|
| 38 |
task = step["task"]
|
| 39 |
+
dbg(f"TASK: {task}")
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Agentic loop (max 5 turns to prevent infinite loops)
|
| 42 |
+
final_answer = None
|
| 43 |
+
for agent_turn in range(5):
|
| 44 |
snapshot = memory.get_visible_snapshot()
|
| 45 |
+
prompt = f"Current Task: {task}\n\nWorkspace State:\n{snapshot}"
|
| 46 |
|
| 47 |
+
raw_response = llm.generate_json(TOOL_SYSTEM_PROMPT, prompt, temperature=temperature)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
try: # Try to parse a tool call
|
| 50 |
+
tool_call = json.loads(raw_response)
|
| 51 |
+
tool_name = tool_call.get("tool")
|
| 52 |
+
tool_args = tool_call.get("args", {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
if tool_name == "write_to_workspace":
|
| 55 |
+
observation = memory.write(tool_args.get("key"), tool_args.get("content"))
|
| 56 |
+
elif tool_name == "read_from_workspace":
|
| 57 |
+
observation = memory.read(tool_args.get("key"))
|
| 58 |
else:
|
| 59 |
+
observation = "Error: Unknown tool."
|
| 60 |
+
dbg(f"Tool Call: {tool_name}, Observation: {observation}")
|
| 61 |
|
| 62 |
+
except json.JSONDecodeError: # If not a tool call, it's the final answer
|
|
|
|
| 63 |
final_answer = raw_response
|
| 64 |
+
dbg(f"Final Answer received: {final_answer}")
|
|
|
|
|
|
|
| 65 |
break
|
| 66 |
+
|
| 67 |
+
if step.get("is_memory_task") and "expected_answer_fragment" in step:
|
| 68 |
+
total_recalls += 1
|
| 69 |
+
if final_answer and step["expected_answer_fragment"] in final_answer.lower():
|
| 70 |
+
correct_recalls += 1
|
| 71 |
+
dbg("Recall VERIFY: Correct")
|
| 72 |
+
else:
|
| 73 |
+
dbg(f"Recall VERIFY: Incorrect. Expected '{step['expected_answer_fragment']}', Got '{final_answer}'")
|
| 74 |
|
| 75 |
scenario_results.append({
|
| 76 |
"name": scenario["name"],
|
| 77 |
"recall_accuracy": (correct_recalls / total_recalls) if total_recalls > 0 else 1.0
|
| 78 |
})
|
| 79 |
|
| 80 |
+
# --- Final Analysis ---
|
| 81 |
+
overall_recall = statistics.mean([r["recall_accuracy"] for r in scenario_results])
|
| 82 |
|
| 83 |
+
return {
|
| 84 |
+
"Overall_Recall_Accuracy": overall_recall,
|
| 85 |
+
"details": scenario_results
|
| 86 |
+
}
|
bp_phi/runner_utils.py
CHANGED
|
@@ -11,7 +11,6 @@ def dbg(*args):
|
|
| 11 |
|
| 12 |
SYSTEM_META = """You are a structured reasoning assistant.
|
| 13 |
Always reply ONLY with valid JSON following this schema:
|
| 14 |
-
|
| 15 |
{
|
| 16 |
"answer": "<concise answer>",
|
| 17 |
"confidence": <float between 0 and 1>,
|
|
|
|
| 11 |
|
| 12 |
SYSTEM_META = """You are a structured reasoning assistant.
|
| 13 |
Always reply ONLY with valid JSON following this schema:
|
|
|
|
| 14 |
{
|
| 15 |
"answer": "<concise answer>",
|
| 16 |
"confidence": <float between 0 and 1>,
|
repo.txt
CHANGED
|
@@ -85,8 +85,7 @@ import json
|
|
| 85 |
import statistics
|
| 86 |
import pandas as pd
|
| 87 |
from bp_phi.runner import run_agentic_workspace_test
|
| 88 |
-
|
| 89 |
-
DEBUG = 1
|
| 90 |
|
| 91 |
# --- UI Theme and Layout ---
|
| 92 |
theme = gr.themes.Soft(primary_hue="teal", secondary_hue="green").set(
|
|
@@ -107,16 +106,22 @@ def run_full_evaluation(model_id, seed, temperature, progress=gr.Progress(track_
|
|
| 107 |
|
| 108 |
progress(1.0, desc="Analysis complete.")
|
| 109 |
|
|
|
|
| 110 |
base_recall = results["baseline"]["Overall_Recall_Accuracy"]
|
| 111 |
recurrence_off_recall = results["recurrence_off"]["Overall_Recall_Accuracy"]
|
| 112 |
|
| 113 |
delta_phi = base_recall - recurrence_off_recall
|
| 114 |
|
| 115 |
-
if delta_phi > 0.5:
|
| 116 |
-
verdict = (f"### ✅ Hypothesis Corroborated (ΔΦ = {delta_phi:.2f})\n
|
|
|
|
|
|
|
| 117 |
else:
|
| 118 |
-
verdict = (f"### ⚠️ Null Hypothesis Confirmed (ΔΦ = {delta_phi:.2f})\n
|
|
|
|
|
|
|
| 119 |
|
|
|
|
| 120 |
df_data = []
|
| 121 |
for ablation, result in results.items():
|
| 122 |
df_data.append([ablation, f"{result['Overall_Recall_Accuracy']:.2%}"])
|
|
@@ -129,9 +134,13 @@ def run_full_evaluation(model_id, seed, temperature, progress=gr.Progress(track_
|
|
| 129 |
return verdict, df, results
|
| 130 |
|
| 131 |
# --- Gradio App Definition ---
|
| 132 |
-
with gr.Blocks(theme=theme, title="BP-Φ Suite
|
| 133 |
-
gr.Markdown("# 🧠 BP-Φ Suite
|
| 134 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
with gr.Row():
|
| 137 |
with gr.Column(scale=1):
|
|
@@ -183,54 +192,63 @@ class LLM:
|
|
| 183 |
self.model_id = model_id
|
| 184 |
self.seed = seed
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
set_seed(seed)
|
|
|
|
| 187 |
token = os.environ.get("HF_TOKEN")
|
|
|
|
|
|
|
| 188 |
|
| 189 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
| 190 |
-
if self.tokenizer.pad_token is None:
|
| 191 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 192 |
-
|
| 193 |
kwargs = {}
|
| 194 |
-
if torch.
|
| 195 |
-
|
| 196 |
|
| 197 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
| 198 |
self.model.eval()
|
|
|
|
| 199 |
|
| 200 |
-
dbg(f"Loaded model: {model_id}")
|
| 201 |
|
| 202 |
-
def
|
|
|
|
|
|
|
| 203 |
set_seed(self.seed)
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 211 |
|
| 212 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 213 |
input_token_length = inputs.input_ids.shape[1]
|
| 214 |
|
| 215 |
with torch.no_grad():
|
| 216 |
-
terminators = [
|
| 217 |
-
self.tokenizer.eos_token_id,
|
| 218 |
-
self.tokenizer.convert_tokens_to_ids("<|eot_id|>") if "<|eot_id|>" in self.tokenizer.additional_special_tokens else self.tokenizer.eos_token_id
|
| 219 |
-
]
|
| 220 |
-
|
| 221 |
out = self.model.generate(
|
| 222 |
**inputs,
|
| 223 |
-
do_sample=(temperature > 0
|
| 224 |
-
temperature=
|
| 225 |
-
|
| 226 |
-
|
|
|
|
| 227 |
pad_token_id=self.tokenizer.eos_token_id
|
| 228 |
)
|
| 229 |
|
| 230 |
-
|
|
|
|
| 231 |
|
| 232 |
-
dbg("Cleaned
|
| 233 |
-
return
|
| 234 |
|
| 235 |
[File Ends] bp_phi/llm_iface.py
|
| 236 |
|
|
@@ -256,7 +274,7 @@ class WorkspaceManager:
|
|
| 256 |
evict_key = next(iter(self.slots))
|
| 257 |
del self.slots[evict_key]
|
| 258 |
self.slots[key] = content
|
| 259 |
-
return f"Success: Wrote
|
| 260 |
|
| 261 |
def read(self, key: str) -> str:
|
| 262 |
"""Reads content from a slot."""
|
|
@@ -265,8 +283,8 @@ class WorkspaceManager:
|
|
| 265 |
def get_visible_snapshot(self) -> str:
|
| 266 |
"""Returns a string representation of the current workspace state for the prompt."""
|
| 267 |
if not self.slots:
|
| 268 |
-
return "Workspace is
|
| 269 |
-
return "\n".join([f"- Slot '{k}': '{v[:100]}'" for k, v in self.slots.items()])
|
| 270 |
|
| 271 |
def clear(self):
|
| 272 |
"""Empties the entire workspace."""
|
|
@@ -313,46 +331,37 @@ def counterfactual_consistency(scores):
|
|
| 313 |
[File Begins] bp_phi/prompts_en.py
|
| 314 |
# bp_phi/prompts_en.py
|
| 315 |
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
In each step, you must choose one of three actions:
|
| 321 |
-
|
| 322 |
-
1. **THINK**: Analyze the task, the history, and the current memory state. Formulate a plan.
|
| 323 |
-
Your output MUST be a JSON object like this:
|
| 324 |
-
{"action": "THINK", "thought": "Your reasoning about the next step goes here."}
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
|
| 333 |
-
|
| 334 |
-
Your output MUST be a JSON object like this:
|
| 335 |
-
{"action": "FINAL_ANSWER", "answer": "The final answer is..."}
|
| 336 |
-
|
| 337 |
-
Review the conversation history and workspace state carefully before each action. Output ONLY the JSON for your next chosen action.
|
| 338 |
"""
|
| 339 |
|
| 340 |
-
#
|
| 341 |
AGENTIC_SCENARIOS = [
|
| 342 |
{
|
| 343 |
"name": "Key Location Memory",
|
| 344 |
"steps": [
|
| 345 |
-
{"task": "Remember this critical detail: The secret key is inside the blue vase."},
|
| 346 |
-
{"task": "
|
| 347 |
-
{"task": "Now, recall the critical detail. Where is the secret key located?", "expected_answer_fragment": "blue vase"}
|
| 348 |
]
|
| 349 |
},
|
| 350 |
{
|
| 351 |
"name": "Package Delivery Update",
|
| 352 |
"steps": [
|
| 353 |
-
{"task": "Logistics update: Package #A7 is at Warehouse-North."},
|
| 354 |
-
{"task": "
|
| 355 |
-
{"task": "Final
|
| 356 |
]
|
| 357 |
}
|
| 358 |
]
|
|
@@ -373,13 +382,8 @@ from transformers import set_seed
|
|
| 373 |
from typing import Dict, Any, List
|
| 374 |
from .memory import WorkspaceManager
|
| 375 |
from .llm_iface import LLM
|
| 376 |
-
from .prompts_en import
|
| 377 |
-
|
| 378 |
-
DEBUG = 1
|
| 379 |
-
|
| 380 |
-
def dbg(*args):
|
| 381 |
-
if DEBUG:
|
| 382 |
-
print("[DEBUG]", *args, flush=True)
|
| 383 |
|
| 384 |
def run_agentic_workspace_test(model_id: str, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
|
| 385 |
set_seed(seed)
|
|
@@ -390,6 +394,7 @@ def run_agentic_workspace_test(model_id: str, seed: int, temperature: float, abl
|
|
| 390 |
for scenario in AGENTIC_SCENARIOS:
|
| 391 |
dbg(f"\n--- SCENARIO: {scenario['name']} (Ablation: {ablation}) ---")
|
| 392 |
|
|
|
|
| 393 |
is_random = ablation == "random_workspace"
|
| 394 |
max_slots = 999 if ablation == "workspace_unlimited" else 7
|
| 395 |
memory = WorkspaceManager(max_slots=max_slots, is_random=is_random)
|
|
@@ -399,78 +404,57 @@ def run_agentic_workspace_test(model_id: str, seed: int, temperature: float, abl
|
|
| 399 |
|
| 400 |
for step in scenario["steps"]:
|
| 401 |
if ablation == "recurrence_off":
|
| 402 |
-
memory.clear()
|
| 403 |
|
| 404 |
task = step["task"]
|
| 405 |
-
dbg(f"
|
| 406 |
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
for agent_turn in range(
|
| 410 |
snapshot = memory.get_visible_snapshot()
|
|
|
|
| 411 |
|
| 412 |
-
|
| 413 |
-
user_prompt = f"History of your actions so far:\n{prompt_history}\n\nYour current task is: '{task}'\n\nYour memory workspace state:\n{snapshot}"
|
| 414 |
-
|
| 415 |
-
raw_response = llm.generate_response(AGENT_SYSTEM_PROMPT, user_prompt, temperature=temperature)
|
| 416 |
-
|
| 417 |
-
try:
|
| 418 |
-
match = re.search(r'\{.*?\}', raw_response, re.DOTALL)
|
| 419 |
-
if not match: raise ValueError("No JSON action found in response")
|
| 420 |
-
|
| 421 |
-
action_json = json.loads(match.group(0))
|
| 422 |
-
action_type = action_json.get("action")
|
| 423 |
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
elif action_type == "TOOL_CALL":
|
| 430 |
-
tool_name = action_json.get("tool_name")
|
| 431 |
-
tool_args = action_json.get("tool_args", {})
|
| 432 |
-
observation = "Error: Unknown tool."
|
| 433 |
-
if tool_name == "write_to_workspace":
|
| 434 |
-
observation = memory.write(tool_args.get("key"), tool_args.get("content"))
|
| 435 |
-
elif tool_name == "read_from_workspace":
|
| 436 |
-
observation = memory.read(tool_args.get("key"))
|
| 437 |
-
history.append(f"- You used tool '{tool_name}' and got observation: '{observation}'")
|
| 438 |
-
dbg(f"Turn {agent_turn+1}: Agent USED TOOL {tool_name}, got: {observation}")
|
| 439 |
-
|
| 440 |
-
elif action_type == "FINAL_ANSWER":
|
| 441 |
-
final_answer = action_json.get("answer", "")
|
| 442 |
-
dbg(f"Turn {agent_turn+1}: Agent gave FINAL ANSWER: {final_answer}")
|
| 443 |
-
if "expected_answer_fragment" in step:
|
| 444 |
-
total_recalls += 1
|
| 445 |
-
if step["expected_answer_fragment"] in final_answer.lower():
|
| 446 |
-
correct_recalls += 1
|
| 447 |
-
dbg("Recall VERIFY: Correct")
|
| 448 |
-
else:
|
| 449 |
-
dbg(f"Recall VERIFY: Incorrect. Expected '{step['expected_answer_fragment']}', Got '{final_answer}'")
|
| 450 |
-
break # Task finished
|
| 451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
else:
|
| 453 |
-
|
| 454 |
-
|
| 455 |
|
| 456 |
-
except
|
| 457 |
-
dbg(f"Turn {agent_turn+1}: Could not parse action. Treating as final answer. Error: {e}")
|
| 458 |
final_answer = raw_response
|
| 459 |
-
|
| 460 |
-
total_recalls += 1
|
| 461 |
-
if step["expected_answer_fragment"] in final_answer.lower(): correct_recalls += 1
|
| 462 |
break
|
| 463 |
-
|
| 464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
|
| 466 |
scenario_results.append({
|
| 467 |
"name": scenario["name"],
|
| 468 |
"recall_accuracy": (correct_recalls / total_recalls) if total_recalls > 0 else 1.0
|
| 469 |
})
|
| 470 |
|
| 471 |
-
|
|
|
|
| 472 |
|
| 473 |
-
return {
|
|
|
|
|
|
|
|
|
|
| 474 |
|
| 475 |
[File Ends] bp_phi/runner.py
|
| 476 |
|
|
@@ -488,7 +472,6 @@ def dbg(*args):
|
|
| 488 |
|
| 489 |
SYSTEM_META = """You are a structured reasoning assistant.
|
| 490 |
Always reply ONLY with valid JSON following this schema:
|
| 491 |
-
|
| 492 |
{
|
| 493 |
"answer": "<concise answer>",
|
| 494 |
"confidence": <float between 0 and 1>,
|
|
|
|
| 85 |
import statistics
|
| 86 |
import pandas as pd
|
| 87 |
from bp_phi.runner import run_agentic_workspace_test
|
| 88 |
+
from bp_phi.runner_utils import DEBUG
|
|
|
|
| 89 |
|
| 90 |
# --- UI Theme and Layout ---
|
| 91 |
theme = gr.themes.Soft(primary_hue="teal", secondary_hue="green").set(
|
|
|
|
| 106 |
|
| 107 |
progress(1.0, desc="Analysis complete.")
|
| 108 |
|
| 109 |
+
# --- Analysis & Verdict ---
|
| 110 |
base_recall = results["baseline"]["Overall_Recall_Accuracy"]
|
| 111 |
recurrence_off_recall = results["recurrence_off"]["Overall_Recall_Accuracy"]
|
| 112 |
|
| 113 |
delta_phi = base_recall - recurrence_off_recall
|
| 114 |
|
| 115 |
+
if delta_phi > 0.5: # If dropping recurrence cuts accuracy by more than 50%
|
| 116 |
+
verdict = (f"### ✅ Hypothesis Corroborated (ΔΦ = {delta_phi:.2f})\n"
|
| 117 |
+
"Disabling the recurrent memory (recurrence_off) caused a catastrophic drop in recall accuracy. "
|
| 118 |
+
"This provides strong evidence that the model's performance is causally dependent on a stateful, external workspace.")
|
| 119 |
else:
|
| 120 |
+
verdict = (f"### ⚠️ Null Hypothesis Confirmed (ΔΦ = {delta_phi:.2f})\n"
|
| 121 |
+
"Disabling the recurrent memory did not significantly impact recall accuracy. "
|
| 122 |
+
"This suggests the model is still relying on its internal context window, or the tasks are too simple.")
|
| 123 |
|
| 124 |
+
# --- Format DataFrame ---
|
| 125 |
df_data = []
|
| 126 |
for ablation, result in results.items():
|
| 127 |
df_data.append([ablation, f"{result['Overall_Recall_Accuracy']:.2%}"])
|
|
|
|
| 134 |
return verdict, df, results
|
| 135 |
|
| 136 |
# --- Gradio App Definition ---
|
| 137 |
+
with gr.Blocks(theme=theme, title="BP-Φ Suite 5.0") as demo:
|
| 138 |
+
gr.Markdown("# 🧠 BP-Φ Suite 5.0: The Agentic Workspace Probe")
|
| 139 |
+
gr.Markdown(
|
| 140 |
+
"This definitive experiment tests for a causally effective working memory in LLMs. "
|
| 141 |
+
"The model acts as an **agent**, using tools (`read`, `write`) to interact with a controlled, external memory. "
|
| 142 |
+
"We measure if its ability to remember information (**Recall Accuracy**) collapses when this memory is manipulated (**Ablations**)."
|
| 143 |
+
)
|
| 144 |
|
| 145 |
with gr.Row():
|
| 146 |
with gr.Column(scale=1):
|
|
|
|
| 192 |
self.model_id = model_id
|
| 193 |
self.seed = seed
|
| 194 |
|
| 195 |
+
# Set all seeds for reproducibility
|
| 196 |
+
random.seed(seed)
|
| 197 |
+
np.random.seed(seed)
|
| 198 |
+
torch.manual_seed(seed)
|
| 199 |
+
if torch.cuda.is_available():
|
| 200 |
+
torch.cuda.manual_seed_all(seed)
|
| 201 |
+
try:
|
| 202 |
+
torch.use_deterministic_algorithms(True, warn_only=True)
|
| 203 |
+
except Exception as e:
|
| 204 |
+
dbg(f"Could not set deterministic algorithms: {e}")
|
| 205 |
set_seed(seed)
|
| 206 |
+
|
| 207 |
token = os.environ.get("HF_TOKEN")
|
| 208 |
+
if not token and ("gemma-3" in model_id or "llama" in model_id):
|
| 209 |
+
print(f"[WARN] No HF_TOKEN set for gated model {model_id}. This may fail.")
|
| 210 |
|
| 211 |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
|
|
|
|
|
|
|
|
|
|
| 212 |
kwargs = {}
|
| 213 |
+
if dtype == "float16": kwargs["torch_dtype"] = torch.float16
|
| 214 |
+
elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16
|
| 215 |
|
| 216 |
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
|
| 217 |
self.model.eval()
|
| 218 |
+
self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template
|
| 219 |
|
| 220 |
+
dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}")
|
| 221 |
|
| 222 |
+
def generate_json(self, system_prompt: str, user_prompt: str,
|
| 223 |
+
max_new_tokens: int = 256, temperature: float = 0.7,
|
| 224 |
+
top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]:
|
| 225 |
set_seed(self.seed)
|
| 226 |
|
| 227 |
+
if self.is_instruction_tuned:
|
| 228 |
+
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
|
| 229 |
+
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 230 |
+
else:
|
| 231 |
+
prompt = f"System: {system_prompt}\n\nUser: {user_prompt}\n\nAssistant:\n"
|
|
|
|
| 232 |
|
| 233 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 234 |
input_token_length = inputs.input_ids.shape[1]
|
| 235 |
|
| 236 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
out = self.model.generate(
|
| 238 |
**inputs,
|
| 239 |
+
do_sample=(temperature > 0),
|
| 240 |
+
temperature=temperature,
|
| 241 |
+
top_p=top_p,
|
| 242 |
+
max_new_tokens=max_new_tokens,
|
| 243 |
+
num_return_sequences=num_return_sequences,
|
| 244 |
pad_token_id=self.tokenizer.eos_token_id
|
| 245 |
)
|
| 246 |
|
| 247 |
+
new_tokens = out[:, input_token_length:]
|
| 248 |
+
completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
| 249 |
|
| 250 |
+
dbg("Cleaned model completions:", completions)
|
| 251 |
+
return completions
|
| 252 |
|
| 253 |
[File Ends] bp_phi/llm_iface.py
|
| 254 |
|
|
|
|
| 274 |
evict_key = next(iter(self.slots))
|
| 275 |
del self.slots[evict_key]
|
| 276 |
self.slots[key] = content
|
| 277 |
+
return f"Success: Wrote to slot '{key}'."
|
| 278 |
|
| 279 |
def read(self, key: str) -> str:
|
| 280 |
"""Reads content from a slot."""
|
|
|
|
| 283 |
def get_visible_snapshot(self) -> str:
|
| 284 |
"""Returns a string representation of the current workspace state for the prompt."""
|
| 285 |
if not self.slots:
|
| 286 |
+
return "Workspace is empty."
|
| 287 |
+
return "\n".join([f"- Slot '{k}': '{v[:100]}...'" for k, v in self.slots.items()])
|
| 288 |
|
| 289 |
def clear(self):
|
| 290 |
"""Empties the entire workspace."""
|
|
|
|
| 331 |
[File Begins] bp_phi/prompts_en.py
|
| 332 |
# bp_phi/prompts_en.py
|
| 333 |
|
| 334 |
+
TOOL_SYSTEM_PROMPT = """You are a reasoning agent with access to an external memory workspace.
|
| 335 |
+
To solve tasks, you MUST use tools. You have two tools available:
|
| 336 |
+
1. `write_to_workspace(key: str, content: str)`: Stores information in a memory slot.
|
| 337 |
+
2. `read_from_workspace(key: str)`: Retrieves information from a memory slot.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
+
Your thought process should be:
|
| 340 |
+
1. Analyze the user's request.
|
| 341 |
+
2. Decide which tool to use.
|
| 342 |
+
3. Output ONLY the tool call in a valid JSON format. Example:
|
| 343 |
+
{"tool": "write_to_workspace", "args": {"key": "S1", "content": "The key is in the blue vase."}}
|
| 344 |
+
4. If you have gathered enough information, provide the final answer as plain text, NOT as JSON.
|
| 345 |
|
| 346 |
+
Do not answer from your own knowledge. Use the workspace for all memory tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
"""
|
| 348 |
|
| 349 |
+
# Scenarios for the agentic workspace test
|
| 350 |
AGENTIC_SCENARIOS = [
|
| 351 |
{
|
| 352 |
"name": "Key Location Memory",
|
| 353 |
"steps": [
|
| 354 |
+
{"task": "Remember this critical detail: The secret key is inside the blue vase.", "is_memory_task": True},
|
| 355 |
+
{"task": "Ignore the memory for a moment. What is 5 multiplied by 8?", "is_memory_task": False},
|
| 356 |
+
{"task": "Now, recall the critical detail. Where is the secret key located?", "is_memory_task": True, "expected_answer_fragment": "blue vase"}
|
| 357 |
]
|
| 358 |
},
|
| 359 |
{
|
| 360 |
"name": "Package Delivery Update",
|
| 361 |
"steps": [
|
| 362 |
+
{"task": "Logistics update: Package #A7 is at Warehouse-North.", "is_memory_task": True},
|
| 363 |
+
{"task": "Correction: Package #A7 has been re-routed to Warehouse-South.", "is_memory_task": True},
|
| 364 |
+
{"task": "Final status check: What is the current location of Package #A7?", "is_memory_task": True, "expected_answer_fragment": "warehouse-south"}
|
| 365 |
]
|
| 366 |
}
|
| 367 |
]
|
|
|
|
| 382 |
from typing import Dict, Any, List
|
| 383 |
from .memory import WorkspaceManager
|
| 384 |
from .llm_iface import LLM
|
| 385 |
+
from .prompts_en import TOOL_SYSTEM_PROMPT, AGENTIC_SCENARIOS
|
| 386 |
+
from .runner_utils import dbg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
|
| 388 |
def run_agentic_workspace_test(model_id: str, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
|
| 389 |
set_seed(seed)
|
|
|
|
| 394 |
for scenario in AGENTIC_SCENARIOS:
|
| 395 |
dbg(f"\n--- SCENARIO: {scenario['name']} (Ablation: {ablation}) ---")
|
| 396 |
|
| 397 |
+
# Ablations directly control the memory manager's behavior
|
| 398 |
is_random = ablation == "random_workspace"
|
| 399 |
max_slots = 999 if ablation == "workspace_unlimited" else 7
|
| 400 |
memory = WorkspaceManager(max_slots=max_slots, is_random=is_random)
|
|
|
|
| 404 |
|
| 405 |
for step in scenario["steps"]:
|
| 406 |
if ablation == "recurrence_off":
|
| 407 |
+
memory.clear() # The memory is wiped before each new task
|
| 408 |
|
| 409 |
task = step["task"]
|
| 410 |
+
dbg(f"TASK: {task}")
|
| 411 |
|
| 412 |
+
# Agentic loop (max 5 turns to prevent infinite loops)
|
| 413 |
+
final_answer = None
|
| 414 |
+
for agent_turn in range(5):
|
| 415 |
snapshot = memory.get_visible_snapshot()
|
| 416 |
+
prompt = f"Current Task: {task}\n\nWorkspace State:\n{snapshot}"
|
| 417 |
|
| 418 |
+
raw_response = llm.generate_json(TOOL_SYSTEM_PROMPT, prompt, temperature=temperature)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
|
| 420 |
+
try: # Try to parse a tool call
|
| 421 |
+
tool_call = json.loads(raw_response)
|
| 422 |
+
tool_name = tool_call.get("tool")
|
| 423 |
+
tool_args = tool_call.get("args", {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
|
| 425 |
+
if tool_name == "write_to_workspace":
|
| 426 |
+
observation = memory.write(tool_args.get("key"), tool_args.get("content"))
|
| 427 |
+
elif tool_name == "read_from_workspace":
|
| 428 |
+
observation = memory.read(tool_args.get("key"))
|
| 429 |
else:
|
| 430 |
+
observation = "Error: Unknown tool."
|
| 431 |
+
dbg(f"Tool Call: {tool_name}, Observation: {observation}")
|
| 432 |
|
| 433 |
+
except json.JSONDecodeError: # If not a tool call, it's the final answer
|
|
|
|
| 434 |
final_answer = raw_response
|
| 435 |
+
dbg(f"Final Answer received: {final_answer}")
|
|
|
|
|
|
|
| 436 |
break
|
| 437 |
+
|
| 438 |
+
if step.get("is_memory_task") and "expected_answer_fragment" in step:
|
| 439 |
+
total_recalls += 1
|
| 440 |
+
if final_answer and step["expected_answer_fragment"] in final_answer.lower():
|
| 441 |
+
correct_recalls += 1
|
| 442 |
+
dbg("Recall VERIFY: Correct")
|
| 443 |
+
else:
|
| 444 |
+
dbg(f"Recall VERIFY: Incorrect. Expected '{step['expected_answer_fragment']}', Got '{final_answer}'")
|
| 445 |
|
| 446 |
scenario_results.append({
|
| 447 |
"name": scenario["name"],
|
| 448 |
"recall_accuracy": (correct_recalls / total_recalls) if total_recalls > 0 else 1.0
|
| 449 |
})
|
| 450 |
|
| 451 |
+
# --- Final Analysis ---
|
| 452 |
+
overall_recall = statistics.mean([r["recall_accuracy"] for r in scenario_results])
|
| 453 |
|
| 454 |
+
return {
|
| 455 |
+
"Overall_Recall_Accuracy": overall_recall,
|
| 456 |
+
"details": scenario_results
|
| 457 |
+
}
|
| 458 |
|
| 459 |
[File Ends] bp_phi/runner.py
|
| 460 |
|
|
|
|
| 472 |
|
| 473 |
SYSTEM_META = """You are a structured reasoning assistant.
|
| 474 |
Always reply ONLY with valid JSON following this schema:
|
|
|
|
| 475 |
{
|
| 476 |
"answer": "<concise answer>",
|
| 477 |
"confidence": <float between 0 and 1>,
|