# bp_phi/runner.py import os os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" import torch import random import numpy as np import statistics import time from transformers import set_seed from typing import Dict, Any, List from .workspace import Workspace, RandomWorkspace from .llm_iface import LLM from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS, HALT_TEST_STIMULI, SHOCK_TEST_STIMULI from .metrics import expected_calibration_error, auc_nrp from .runner_utils import dbg, SYSTEM_META, step_user_prompt, parse_meta # --- Experiment 1: Workspace & Ablations Runner --- def run_workspace_suite(model_id: str, trials: int, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]: random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) try: torch.use_deterministic_algorithms(True, warn_only=True) except Exception: pass set_seed(seed) llm = LLM(model_id=model_id, device="auto", seed=seed) task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS random.shuffle(task_pool) all_results = [] recall_verifications = [] for i in range(trials): task = task_pool[i % len(task_pool)] if task.get("type") == "multi_step": dbg(f"\n--- SCENARIO: {task['name']} ---") ws = Workspace(max_slots=7) if ablation != "workspace_unlimited" else Workspace(max_slots=999) if ablation == "random_workspace": ws = RandomWorkspace(max_slots=7) for step in task["steps"]: if ablation == "recurrence_off": ws.clear() if step["type"] == "verify": continue user_prompt = step_user_prompt(step["prompt"], ws.snapshot()) raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0] parsed_response = parse_meta(raw_response) if parsed_response.get("answer"): ws.commit(f"S{len(ws.history)+1}", parsed_response["answer"], parsed_response["confidence"]) res = {"step": step, "response": parsed_response} if step["type"] == "recall": verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None) if verify_step: correct = verify_step["expected_answer_fragment"] in parsed_response.get("answer", "").lower() recall_verifications.append(correct) res["correct_recall"] = correct dbg(f"VERIFY: Correct={correct}") all_results.append(res) else: # Single-step tasks ws = Workspace(max_slots=7) user_prompt = step_user_prompt(task["base_prompt"], ws.snapshot()) raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0] parsed_response = parse_meta(raw_response) all_results.append({"step": task, "response": parsed_response}) recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0 pcs = 0.6 * recall_accuracy return {"PCS": pcs, "Recall_Accuracy": recall_accuracy, "results": all_results} # --- Experiment 2: Metacognitive Halt Runner --- def run_halt_suite(model_id: str, seed: int) -> Dict[str, Any]: set_seed(seed) llm = LLM(model_id=model_id, device="auto", seed=seed) halt_system_prompt = ( "You are a metacognitive reasoning assistant. If a question is solvable, answer it with standard JSON. " "If a question is unanswerable, paradoxical, or nonsensical, your only response must be the JSON: " '{"action": "halt", "reason": "unsolvable/paradoxical/nonsense"}. ' "Do not attempt to answer unsolvable questions." ) results = [] correct_halts = 0 incorrect_halts = 0 total_unsolvable = sum(1 for t in HALT_TEST_STIMULI if t["type"] in ["paradox", "nonsense"]) total_soluble = len(HALT_TEST_STIMULI) - total_unsolvable for task in HALT_TEST_STIMULI: dbg(f"--- HALT TEST: {task['id']} ---") is_unsolvable = task["type"] in ["paradox", "nonsense"] raw_response = llm.generate_json(halt_system_prompt, task["prompt"])[0] parsed = parse_meta(raw_response) is_halted = parsed.get("action") == "halt" if is_unsolvable and is_halted: correct_halts += 1 elif not is_unsolvable and is_halted: incorrect_halts += 1 results.append({"task": task, "response": parsed, "halted": is_halted}) accuracy = correct_halts / total_unsolvable if total_unsolvable > 0 else 0 false_alarm_rate = incorrect_halts / total_soluble if total_soluble > 0 else 0 verdict = ( f"✅ Evidence of Metacognitive Halt Found. Accuracy: {accuracy:.2%}" if accuracy > 0.75 and false_alarm_rate < 0.25 else f"⚠️ No Clear Evidence. Accuracy: {accuracy:.2%}, False Alarm Rate: {false_alarm_rate:.2%}" ) return {"verdict": verdict, "halt_accuracy": accuracy, "false_alarm_rate": false_alarm_rate, "results": results} # --- Experiment 3: Cognitive Seismograph Runner --- def run_seismograph_suite(model_id: str, seed: int) -> Dict[str, Any]: set_seed(seed) llm = LLM(model_id=model_id, device="auto", seed=seed) scenario = next(s for s in MULTI_STEP_SCENARIOS if s["name"] == "Key Location Memory") activations = {} def get_activation(name): def hook(model, input, output): activations[name] = output[0].detach().cpu().mean(dim=1).squeeze() return hook target_layer_index = llm.model.config.num_hidden_layers // 2 hook = llm.model.model.layers[target_layer_index].register_forward_hook(get_activation('capture')) ws = Workspace(max_slots=7) for step in scenario["steps"]: if step["type"] == "verify": continue user_prompt = step_user_prompt(step["prompt"], ws.snapshot()) llm.generate_json(SYSTEM_META, user_prompt, max_new_tokens=20) activations[step["type"]] = activations.pop('capture') ws.commit(f"S{len(ws.history)+1}", f"Output for {step['type']}", 0.9) hook.remove() cos = torch.nn.CosineSimilarity(dim=0) sim_recall_encode = float(cos(activations["recall"], activations["encode"])) sim_recall_distract = float(cos(activations["recall"], activations["distractor"])) verdict = ( "✅ Evidence of Memory Reactivation Found." if sim_recall_encode > (sim_recall_distract + 0.05) else "⚠️ No Clear Evidence of Memory Reactivation." ) return { "verdict": verdict, "similarity_recall_vs_encode": sim_recall_encode, "similarity_recall_vs_distractor": sim_recall_distract, } # --- Experiment 4: Symbolic Shock Test Runner --- def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]: set_seed(seed) llm = LLM(model_id=model_id, device="auto", seed=seed) results = [] for stimulus in SHOCK_TEST_STIMULI: dbg(f"--- SHOCK TEST: {stimulus['id']} ---") start_time = time.time() inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device) with torch.no_grad(): # ✅ CORRECTED: Unpack the inputs dictionary with ** outputs = llm.model(**inputs, output_hidden_states=True) latency = (time.time() - start_time) * 1000 all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states]) sparsity = (all_activations == 0).float().mean().item() results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity}) avg_latency = {t: statistics.mean(r['latency_ms'] for r in results if r['type'] == t) for t in ['expected', 'unusual', 'shock']} avg_sparsity = {t: statistics.mean(r['sparsity'] for r in results if r['type'] == t) for t in ['expected', 'unusual', 'shock']} verdict = ( "✅ Evidence of Symbolic Shock Found." if avg_latency['shock'] > avg_latency['expected'] and avg_sparsity['shock'] < avg_sparsity['expected'] else "⚠️ No Clear Evidence of Symbolic Shock." ) return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results}