# bp_phi/llm_iface.py import os os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" import torch, random, numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed from typing import List, Optional DEBUG = os.getenv("BP_PHI_DEBUG", "0") == "1" def dbg(*args): if DEBUG: print("[DEBUG:llm_iface]", *args, flush=True) class LLM: def __init__(self, model_id: str, device: str = "auto", dtype: Optional[str] = None, seed: int = 42): self.model_id = model_id self.seed = seed # Set all seeds for reproducibility random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) try: torch.use_deterministic_algorithms(True, warn_only=True) except Exception as e: dbg(f"Could not set deterministic algorithms: {e}") set_seed(seed) token = os.environ.get("HF_TOKEN") if not token and ("gemma-3" in model_id or "llama" in model_id): print(f"[WARN] No HF_TOKEN set for gated model {model_id}. This may fail.") self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token) kwargs = {} if dtype == "float16": kwargs["torch_dtype"] = torch.float16 elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16 self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs) self.model.eval() self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}") def generate_json(self, system_prompt: str, user_prompt: str, max_new_tokens: int = 256, temperature: float = 0.7, top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]: set_seed(self.seed) if self.is_instruction_tuned: messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}] prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) else: prompt = f"System: {system_prompt}\n\nUser: {user_prompt}\n\nAssistant:\n" inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device) input_token_length = inputs.input_ids.shape[1] with torch.no_grad(): out = self.model.generate( **inputs, do_sample=(temperature > 0), temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, num_return_sequences=num_return_sequences, pad_token_id=self.tokenizer.eos_token_id ) new_tokens = out[:, input_token_length:] completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) dbg("Cleaned model completions:", completions) return completions