Spaces:
Runtime error
Runtime error
cryptocalypse
commited on
Update gen.py
Browse files
gen.py
CHANGED
|
@@ -1,10 +1,14 @@
|
|
| 1 |
import torch
|
| 2 |
-
from transformers import pipeline
|
| 3 |
import sys
|
| 4 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
# Cargar el pipeline de generaciΓ³n de texto
|
| 7 |
-
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto")
|
| 8 |
|
| 9 |
|
| 10 |
# Definir el prompt para generar un JSON con eventos anidados
|
|
@@ -149,16 +153,20 @@ prompt = (
|
|
| 149 |
|
| 150 |
def generate(event):
|
| 151 |
# Generar el texto usando el modelo
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
# Imprimir la salida generada
|
| 164 |
-
return
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
import sys
|
| 3 |
import sys
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-zephyr-1_6b')
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 8 |
+
'stabilityai/stablelm-2-zephyr-1_6b',
|
| 9 |
+
device_map="auto"
|
| 10 |
+
)
|
| 11 |
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
# Definir el prompt para generar un JSON con eventos anidados
|
|
|
|
| 153 |
|
| 154 |
def generate(event):
|
| 155 |
# Generar el texto usando el modelo
|
| 156 |
+
prompt = [{'role':'system','content':event},{'role': 'user', 'content': 'Which famous math number begins with 1.6 ...?'}]
|
| 157 |
+
inputs = tokenizer.apply_chat_template(
|
| 158 |
+
prompt,
|
| 159 |
+
add_generation_prompt=True,
|
| 160 |
+
return_tensors='pt'
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
tokens = model.generate(
|
| 164 |
+
inputs.to(model.device),
|
| 165 |
+
max_new_tokens=1024,
|
| 166 |
+
temperature=0.5,
|
| 167 |
+
do_sample=True
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
|
| 171 |
# Imprimir la salida generada
|
| 172 |
+
return tokenizer.decode(tokens[0], skip_special_tokens=False)
|