Spaces:
Runtime error
Runtime error
Commit
Β·
81dcb15
1
Parent(s):
eafed86
plotly instead of matplotlib
Browse files- app.py +10 -5
- psychohistory.py +35 -42
app.py
CHANGED
|
@@ -15,14 +15,19 @@ with gr.Blocks(title="PSYCHOHISTORY") as app:
|
|
| 15 |
outputs=mem_results
|
| 16 |
)
|
| 17 |
|
| 18 |
-
with gr.Row():
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
psychohistory.main,
|
| 24 |
inputs=[mem_results],
|
| 25 |
-
outputs=
|
| 26 |
)
|
| 27 |
|
| 28 |
if __name__ == "__main__":
|
|
|
|
| 15 |
outputs=mem_results
|
| 16 |
)
|
| 17 |
|
| 18 |
+
# with gr.Row():
|
| 19 |
+
# img_output = gr.Image(label="Graph Visualization", type="filepath") # Add an Image component
|
| 20 |
|
| 21 |
+
# # Trigger graph generation after JSON is generated
|
| 22 |
+
# mem_results.change(
|
| 23 |
+
# psychohistory.main,
|
| 24 |
+
# inputs=[mem_results],
|
| 25 |
+
# outputs=img_output
|
| 26 |
+
# )
|
| 27 |
+
mem_results.change(
|
| 28 |
psychohistory.main,
|
| 29 |
inputs=[mem_results],
|
| 30 |
+
outputs=None
|
| 31 |
)
|
| 32 |
|
| 33 |
if __name__ == "__main__":
|
psychohistory.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import
|
| 2 |
from mpl_toolkits.mplot3d import Axes3D
|
| 3 |
import networkx as nx
|
| 4 |
import numpy as np
|
|
@@ -95,38 +95,34 @@ def find_paths(G):
|
|
| 95 |
|
| 96 |
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
|
|
|
| 100 |
H = G.subgraph(path).copy()
|
| 101 |
pos = nx.get_node_attributes(G, 'pos')
|
| 102 |
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
|
| 103 |
|
| 104 |
-
fig = plt.figure(figsize=(16, 12))
|
| 105 |
-
ax = fig.add_subplot(111, projection='3d')
|
| 106 |
-
|
| 107 |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in [pos[node] for node in path]]
|
| 108 |
-
|
|
|
|
|
|
|
| 109 |
|
|
|
|
| 110 |
for edge in H.edges():
|
| 111 |
x_start, y_start, z_start = pos[edge[0]]
|
| 112 |
x_end, y_end, z_end = pos[edge[1]]
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
if node in path:
|
| 117 |
-
ax.text(x, y, z, str(node), fontsize=12, color='black')
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
|
| 124 |
-
plt.savefig(filename, bbox_inches='tight')
|
| 125 |
-
plt.close()
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
"""Draws the entire graph in 3D."""
|
| 130 |
pos = nx.get_node_attributes(G, 'pos')
|
| 131 |
labels = nx.get_node_attributes(G, 'label')
|
| 132 |
|
|
@@ -135,35 +131,32 @@ def draw_global_tree_3d(G, filename='global_tree.png'):
|
|
| 135 |
return
|
| 136 |
|
| 137 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
| 138 |
-
fig = plt.figure(figsize=(16, 12))
|
| 139 |
-
ax = fig.add_subplot(111, projection='3d')
|
| 140 |
|
| 141 |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
|
| 142 |
-
|
|
|
|
|
|
|
| 143 |
|
|
|
|
| 144 |
for edge in G.edges():
|
| 145 |
x_start, y_start, z_start = pos[edge[0]]
|
| 146 |
x_end, y_end, z_end = pos[edge[1]]
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
label = labels.get(node, f"{node}")
|
| 151 |
-
ax.text(x, y, z, label, fontsize=12, color='black')
|
| 152 |
-
|
| 153 |
-
ax.set_xlabel('Time')
|
| 154 |
-
ax.set_ylabel('Probability')
|
| 155 |
-
ax.set_zlabel('Event Number')
|
| 156 |
-
ax.set_title('3D Event Tree')
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
| 160 |
|
| 161 |
|
| 162 |
def main(json_data):
|
| 163 |
G = nx.DiGraph()
|
| 164 |
build_graph_from_json(json_data, G) # Build graph from the provided JSON data
|
| 165 |
|
| 166 |
-
|
|
|
|
| 167 |
|
| 168 |
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
|
| 169 |
|
|
@@ -181,12 +174,12 @@ def main(json_data):
|
|
| 181 |
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_path) - min(G.nodes[node]['pos'][0] for node in shortest_path):.2f}")
|
| 182 |
|
| 183 |
if best_path:
|
| 184 |
-
|
| 185 |
if worst_path:
|
| 186 |
-
|
| 187 |
if longest_path:
|
| 188 |
-
|
| 189 |
if shortest_path:
|
| 190 |
-
|
| 191 |
|
| 192 |
-
return
|
|
|
|
| 1 |
+
import plotly.graph_objects as go # Import Plotly for interactive plots
|
| 2 |
from mpl_toolkits.mplot3d import Axes3D
|
| 3 |
import networkx as nx
|
| 4 |
import numpy as np
|
|
|
|
| 95 |
|
| 96 |
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path
|
| 97 |
|
| 98 |
+
|
| 99 |
+
def draw_path_3d_interactive(G, path, highlight_color='blue'):
|
| 100 |
+
"""Draws a specific path in 3D using Plotly for interactivity."""
|
| 101 |
H = G.subgraph(path).copy()
|
| 102 |
pos = nx.get_node_attributes(G, 'pos')
|
| 103 |
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
|
| 104 |
|
|
|
|
|
|
|
|
|
|
| 105 |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in [pos[node] for node in path]]
|
| 106 |
+
node_trace = go.Scatter3d(x=x_vals, y=y_vals, z=z_vals, mode='markers+text',
|
| 107 |
+
marker=dict(size=10, color=node_colors, line=dict(width=1, color='black')),
|
| 108 |
+
text=list(map(str, path)), textposition='top center', hoverinfo='text')
|
| 109 |
|
| 110 |
+
edge_traces = []
|
| 111 |
for edge in H.edges():
|
| 112 |
x_start, y_start, z_start = pos[edge[0]]
|
| 113 |
x_end, y_end, z_end = pos[edge[1]]
|
| 114 |
+
edge_trace = go.Scatter3d(x=[x_start, x_end], y=[y_start, y_end], z=[z_start, z_end],
|
| 115 |
+
mode='lines', line=dict(width=2, color=highlight_color), hoverinfo='none')
|
| 116 |
+
edge_traces.append(edge_trace)
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
layout = go.Layout(scene=dict(xaxis_title='Time (weeks)', yaxis_title='Event Probability', zaxis_title='Event Number'),
|
| 119 |
+
title='3D Event Tree - Path')
|
| 120 |
+
fig = go.Figure(data=[node_trace] + edge_traces, layout=layout)
|
| 121 |
+
fig.show()
|
| 122 |
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
def draw_global_tree_3d_interactive(G):
|
| 125 |
+
"""Draws the entire graph in 3D using Plotly for interactivity."""
|
|
|
|
| 126 |
pos = nx.get_node_attributes(G, 'pos')
|
| 127 |
labels = nx.get_node_attributes(G, 'label')
|
| 128 |
|
|
|
|
| 131 |
return
|
| 132 |
|
| 133 |
x_vals, y_vals, z_vals = zip(*pos.values())
|
|
|
|
|
|
|
| 134 |
|
| 135 |
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
|
| 136 |
+
node_trace = go.Scatter3d(x=x_vals, y=y_vals, z=z_vals, mode='markers+text',
|
| 137 |
+
marker=dict(size=10, color=node_colors, line=dict(width=1, color='black')),
|
| 138 |
+
text=list(labels.values()), textposition='top center', hoverinfo='text')
|
| 139 |
|
| 140 |
+
edge_traces = []
|
| 141 |
for edge in G.edges():
|
| 142 |
x_start, y_start, z_start = pos[edge[0]]
|
| 143 |
x_end, y_end, z_end = pos[edge[1]]
|
| 144 |
+
edge_trace = go.Scatter3d(x=[x_start, x_end], y=[y_start, y_end], z=[z_start, z_end],
|
| 145 |
+
mode='lines', line=dict(width=2, color='gray'), hoverinfo='none')
|
| 146 |
+
edge_traces.append(edge_trace)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
layout = go.Layout(scene=dict(xaxis_title='Time', yaxis_title='Probability', zaxis_title='Event Number'),
|
| 149 |
+
title='3D Event Tree')
|
| 150 |
+
fig = go.Figure(data=[node_trace] + edge_traces, layout=layout)
|
| 151 |
+
fig.show()
|
| 152 |
|
| 153 |
|
| 154 |
def main(json_data):
|
| 155 |
G = nx.DiGraph()
|
| 156 |
build_graph_from_json(json_data, G) # Build graph from the provided JSON data
|
| 157 |
|
| 158 |
+
# Draw the interactive graph using Plotly
|
| 159 |
+
draw_global_tree_3d_interactive(G)
|
| 160 |
|
| 161 |
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
|
| 162 |
|
|
|
|
| 174 |
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_path) - min(G.nodes[node]['pos'][0] for node in shortest_path):.2f}")
|
| 175 |
|
| 176 |
if best_path:
|
| 177 |
+
draw_path_3d_interactive(G, best_path, 'blue')
|
| 178 |
if worst_path:
|
| 179 |
+
draw_path_3d_interactive(G, worst_path, 'red')
|
| 180 |
if longest_path:
|
| 181 |
+
draw_path_3d_interactive(G, longest_path, 'green')
|
| 182 |
if shortest_path:
|
| 183 |
+
draw_path_3d_interactive(G, shortest_path, 'purple')
|
| 184 |
|
| 185 |
+
return None # No need to return a filename for interactive plot
|