Spaces:
Runtime error
Runtime error
cryptocalypse
commited on
Create psychohistory.py
Browse files- psychohistory.py +260 -0
psychohistory.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib.pyplot as plt
|
| 2 |
+
from mpl_toolkits.mplot3d import Axes3D
|
| 3 |
+
import networkx as nx
|
| 4 |
+
import random
|
| 5 |
+
import numpy as np
|
| 6 |
+
import json
|
| 7 |
+
import sys
|
| 8 |
+
|
| 9 |
+
def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G, parent=None, node_count_per_depth=None):
|
| 10 |
+
"""Generates a tree of nodes with positions adjusted on the x-axis, and the number of nodes on the z-axis."""
|
| 11 |
+
if node_count_per_depth is None:
|
| 12 |
+
node_count_per_depth = {}
|
| 13 |
+
|
| 14 |
+
if depth not in node_count_per_depth:
|
| 15 |
+
node_count_per_depth[depth] = 0
|
| 16 |
+
|
| 17 |
+
if depth > max_depth:
|
| 18 |
+
return node_count_per_depth
|
| 19 |
+
|
| 20 |
+
num_children = random.randint(1, max_nodes)
|
| 21 |
+
x_positions = [current_x + i * x_range / (num_children + 1) for i in range(num_children)]
|
| 22 |
+
|
| 23 |
+
for x in x_positions:
|
| 24 |
+
# Add node to the graph
|
| 25 |
+
node_id = len(G.nodes)
|
| 26 |
+
node_count_per_depth[depth] += 1
|
| 27 |
+
prob = random.uniform(0, 1) # Assign random probability
|
| 28 |
+
G.add_node(node_id, pos=(x, prob, depth)) # Use `depth` for the z position
|
| 29 |
+
if parent is not None:
|
| 30 |
+
G.add_edge(parent, node_id)
|
| 31 |
+
# Recursively add child nodes
|
| 32 |
+
generate_tree(x, current_y + 1, depth + 1, max_depth, max_nodes, x_range, G, parent=node_id, node_count_per_depth=node_count_per_depth)
|
| 33 |
+
|
| 34 |
+
return node_count_per_depth
|
| 35 |
+
|
| 36 |
+
def build_graph_from_json(json_data, G):
|
| 37 |
+
"""Builds a graph from JSON data."""
|
| 38 |
+
def add_event(parent_id, event_data, prob_level):
|
| 39 |
+
for key, value in event_data.get('events', {}).items():
|
| 40 |
+
# Add node
|
| 41 |
+
node_id = len(G.nodes)
|
| 42 |
+
prob = {'high_probability': 0.9, 'medium_probability': 0.5, 'low_probability': 0.1}[prob_level]
|
| 43 |
+
G.add_node(node_id, pos=(len(G.nodes), prob, len(G.nodes))) # Ensure each node has 'pos'
|
| 44 |
+
G.add_edge(parent_id, node_id)
|
| 45 |
+
# Add child events
|
| 46 |
+
add_event(node_id, {'events': value}, key)
|
| 47 |
+
|
| 48 |
+
root_id = len(G.nodes)
|
| 49 |
+
G.add_node(root_id, pos=(0, 0.5, 0)) # Root node with default medium probability
|
| 50 |
+
if len(G.nodes) > 1:
|
| 51 |
+
G.add_edge(-1, root_id) # Root node without a parent
|
| 52 |
+
data = json.loads(json_data)
|
| 53 |
+
add_event(root_id, data, 'medium_probability')
|
| 54 |
+
|
| 55 |
+
def find_paths(G):
|
| 56 |
+
"""Finds the paths with the highest and lowest average probability, and the maximum and minimum duration in graph G."""
|
| 57 |
+
best_path = None
|
| 58 |
+
worst_path = None
|
| 59 |
+
longest_duration_path = None
|
| 60 |
+
shortest_duration_path = None
|
| 61 |
+
best_mean_prob = -1
|
| 62 |
+
worst_mean_prob = float('inf')
|
| 63 |
+
max_duration = -1
|
| 64 |
+
min_duration = float('inf')
|
| 65 |
+
|
| 66 |
+
for source in G.nodes:
|
| 67 |
+
for target in G.nodes:
|
| 68 |
+
if source != target:
|
| 69 |
+
all_paths = list(nx.all_simple_paths(G, source=source, target=target))
|
| 70 |
+
for path in all_paths:
|
| 71 |
+
# Check if all nodes in the path have the 'pos' attribute
|
| 72 |
+
if not all('pos' in G.nodes[node] for node in path):
|
| 73 |
+
continue # Skip paths with nodes missing the 'pos' attribute
|
| 74 |
+
|
| 75 |
+
# Calculate the average probability of the path
|
| 76 |
+
probabilities = [G.nodes[node]['pos'][1] for node in path] # Get probabilities of the nodes in the path
|
| 77 |
+
mean_prob = np.mean(probabilities)
|
| 78 |
+
|
| 79 |
+
# Evaluate the path with the highest average probability
|
| 80 |
+
if mean_prob > best_mean_prob:
|
| 81 |
+
best_mean_prob = mean_prob
|
| 82 |
+
best_path = path
|
| 83 |
+
|
| 84 |
+
# Evaluate the path with the lowest average probability
|
| 85 |
+
if mean_prob < worst_mean_prob:
|
| 86 |
+
worst_mean_prob = mean_prob
|
| 87 |
+
worst_path = path
|
| 88 |
+
|
| 89 |
+
# Calculate the duration of the path
|
| 90 |
+
x_positions = [G.nodes[node]['pos'][0] for node in path]
|
| 91 |
+
duration = max(x_positions) - min(x_positions)
|
| 92 |
+
|
| 93 |
+
# Evaluate the path with the maximum duration
|
| 94 |
+
if duration > max_duration:
|
| 95 |
+
max_duration = duration
|
| 96 |
+
longest_duration_path = path
|
| 97 |
+
|
| 98 |
+
# Evaluate the path with the minimum duration
|
| 99 |
+
if duration < min_duration:
|
| 100 |
+
min_duration = duration
|
| 101 |
+
shortest_duration_path = path
|
| 102 |
+
|
| 103 |
+
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path
|
| 104 |
+
|
| 105 |
+
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
|
| 106 |
+
"""Draws only the specific path in 3D using networkx and matplotlib and saves the figure to a file."""
|
| 107 |
+
# Create a subgraph containing only the nodes and edges of the path
|
| 108 |
+
H = G.subgraph(path).copy()
|
| 109 |
+
|
| 110 |
+
pos = nx.get_node_attributes(G, 'pos')
|
| 111 |
+
|
| 112 |
+
# Get data for 3D visualization
|
| 113 |
+
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
|
| 114 |
+
|
| 115 |
+
fig = plt.figure(figsize=(16, 12))
|
| 116 |
+
ax = fig.add_subplot(111, projection='3d')
|
| 117 |
+
|
| 118 |
+
# Assign colors to the nodes based on probability
|
| 119 |
+
node_colors = []
|
| 120 |
+
for node in path:
|
| 121 |
+
prob = G.nodes[node]['pos'][1]
|
| 122 |
+
if prob < 0.33:
|
| 123 |
+
node_colors.append('red')
|
| 124 |
+
elif prob < 0.67:
|
| 125 |
+
node_colors.append('blue')
|
| 126 |
+
else:
|
| 127 |
+
node_colors.append('green')
|
| 128 |
+
|
| 129 |
+
# Draw nodes
|
| 130 |
+
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
| 131 |
+
|
| 132 |
+
# Draw edges
|
| 133 |
+
for edge in H.edges():
|
| 134 |
+
x_start, y_start, z_start = pos[edge[0]]
|
| 135 |
+
x_end, y_end, z_end = pos[edge[1]]
|
| 136 |
+
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
|
| 137 |
+
|
| 138 |
+
# Add labels to the nodes
|
| 139 |
+
for node, (x, y, z) in pos.items():
|
| 140 |
+
if node in path:
|
| 141 |
+
ax.text(x, y, z, str(node), fontsize=12, color='black')
|
| 142 |
+
|
| 143 |
+
# Adjust labels and title
|
| 144 |
+
ax.set_xlabel('Time (weeks)')
|
| 145 |
+
ax.set_ylabel('Event Probability')
|
| 146 |
+
ax.set_zlabel('Event Number')
|
| 147 |
+
ax.set_title('Event Tree in 3D - Path')
|
| 148 |
+
|
| 149 |
+
plt.savefig(filename, bbox_inches='tight') # Save to a file with adjusted margins
|
| 150 |
+
plt.close() # Close the figure to free up resources
|
| 151 |
+
|
| 152 |
+
def draw_global_tree_3d(G, filename='global_tree.png'):
|
| 153 |
+
"""Draws the entire graph in 3D using networkx and matplotlib and saves the figure to a file."""
|
| 154 |
+
pos = nx.get_node_attributes(G, 'pos')
|
| 155 |
+
|
| 156 |
+
# Get data for 3D visualization
|
| 157 |
+
x_vals, y_vals, z_vals = zip(*pos.values())
|
| 158 |
+
|
| 159 |
+
fig = plt.figure(figsize=(16, 12))
|
| 160 |
+
ax = fig.add_subplot(111, projection='3d')
|
| 161 |
+
|
| 162 |
+
# Assign colors to the nodes based on probability
|
| 163 |
+
node_colors = []
|
| 164 |
+
for node, (x, prob, z) in pos.items():
|
| 165 |
+
if prob < 0.33:
|
| 166 |
+
node_colors.append('red')
|
| 167 |
+
elif prob < 0.67:
|
| 168 |
+
node_colors.append('blue')
|
| 169 |
+
else:
|
| 170 |
+
node_colors.append('green')
|
| 171 |
+
|
| 172 |
+
# Draw nodes
|
| 173 |
+
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
|
| 174 |
+
|
| 175 |
+
# Draw edges
|
| 176 |
+
for edge in G.edges():
|
| 177 |
+
x_start, y_start, z_start = pos[edge[0]]
|
| 178 |
+
x_end, y_end, z_end = pos[edge[1]]
|
| 179 |
+
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
|
| 180 |
+
|
| 181 |
+
# Add labels to the nodes
|
| 182 |
+
for node, (x, y, z) in pos.items():
|
| 183 |
+
ax.text(x, y, z, str(node), fontsize=12, color='black')
|
| 184 |
+
|
| 185 |
+
# Adjust labels and title
|
| 186 |
+
ax.set_xlabel('Time (weeks)')
|
| 187 |
+
ax.set_ylabel('Event Probability')
|
| 188 |
+
ax.set_zlabel('Event Number')
|
| 189 |
+
ax.set_title('Event Tree in 3D')
|
| 190 |
+
|
| 191 |
+
plt.savefig(filename, bbox_inches='tight') # Save to a file with adjusted margins
|
| 192 |
+
plt.close() # Close the figure to free up resources
|
| 193 |
+
|
| 194 |
+
def main(mode, input_file=None):
|
| 195 |
+
G = nx.DiGraph()
|
| 196 |
+
|
| 197 |
+
if mode == 'random':
|
| 198 |
+
starting_x = 0
|
| 199 |
+
starting_y = 0
|
| 200 |
+
max_depth = 5 # Maximum tree depth
|
| 201 |
+
max_nodes = 3 # Maximum number of child nodes
|
| 202 |
+
x_range = 10 # Maximum range for node x positions
|
| 203 |
+
|
| 204 |
+
# Generate the tree and get the node count per depth
|
| 205 |
+
generate_tree(starting_x, starting_y, 0, max_depth, max_nodes, x_range, G)
|
| 206 |
+
elif mode == 'json' and input_file:
|
| 207 |
+
with open(input_file, 'r') as file:
|
| 208 |
+
json_data = file.read()
|
| 209 |
+
build_graph_from_json(json_data, G)
|
| 210 |
+
else:
|
| 211 |
+
print("Invalid mode or input file not provided.")
|
| 212 |
+
return
|
| 213 |
+
|
| 214 |
+
# Find relevant paths
|
| 215 |
+
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path = find_paths(G)
|
| 216 |
+
|
| 217 |
+
# Print the results
|
| 218 |
+
if best_path:
|
| 219 |
+
print(f"\nPath with the highest average probability:")
|
| 220 |
+
print(" -> ".join(map(str, best_path)))
|
| 221 |
+
print(f"Average probability: {best_mean_prob:.2f}")
|
| 222 |
+
|
| 223 |
+
if worst_path:
|
| 224 |
+
print(f"\nPath with the lowest average probability:")
|
| 225 |
+
print(" -> ".join(map(str, worst_path)))
|
| 226 |
+
print(f"Average probability: {worst_mean_prob:.2f}")
|
| 227 |
+
|
| 228 |
+
if longest_duration_path:
|
| 229 |
+
print(f"\nPath with the longest duration:")
|
| 230 |
+
print(" -> ".join(map(str, longest_duration_path)))
|
| 231 |
+
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_duration_path) - min(G.nodes[node]['pos'][0] for node in longest_duration_path):.2f}")
|
| 232 |
+
|
| 233 |
+
if shortest_duration_path:
|
| 234 |
+
print(f"\nPath with the shortest duration:")
|
| 235 |
+
print(" -> ".join(map(str, shortest_duration_path)))
|
| 236 |
+
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_duration_path) - min(G.nodes[node]['pos'][0] for node in shortest_duration_path):.2f}")
|
| 237 |
+
|
| 238 |
+
# Save the global visualization
|
| 239 |
+
draw_global_tree_3d(G, filename='global_tree.png')
|
| 240 |
+
|
| 241 |
+
# Draw and save the 3D figure for each relevant path
|
| 242 |
+
if best_path:
|
| 243 |
+
draw_path_3d(G, path=best_path, filename='best_path.png', highlight_color='blue')
|
| 244 |
+
|
| 245 |
+
if worst_path:
|
| 246 |
+
draw_path_3d(G, path=worst_path, filename='worst_path.png', highlight_color='red')
|
| 247 |
+
|
| 248 |
+
if longest_duration_path:
|
| 249 |
+
draw_path_3d(G, path=longest_duration_path, filename='longest_duration_path.png', highlight_color='green')
|
| 250 |
+
|
| 251 |
+
if shortest_duration_path:
|
| 252 |
+
draw_path_3d(G, path=shortest_duration_path, filename='shortest_duration_path.png', highlight_color='purple')
|
| 253 |
+
|
| 254 |
+
if __name__ == "__main__":
|
| 255 |
+
if len(sys.argv) < 2:
|
| 256 |
+
print("Usage: python script.py <mode> [json_file]")
|
| 257 |
+
else:
|
| 258 |
+
mode = sys.argv[1]
|
| 259 |
+
input_file = sys.argv[2] if len(sys.argv) > 2 else None
|
| 260 |
+
main(mode, input_file)
|