Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,14 +2,6 @@
|
|
| 2 |
# -*- coding: utf-8 -*-
|
| 3 |
"""
|
| 4 |
Hugging Face Space (Gradio) App: Video -> Audio -> Whisper Transkript (+ Downloads SRT/TXT/VTT/JSON)
|
| 5 |
-
|
| 6 |
-
Rechtlicher Hinweis:
|
| 7 |
-
- Verwende diese App nur für eigene Inhalte oder Inhalte, für die du explizit die Erlaubnis hast.
|
| 8 |
-
- Respektiere Urheberrecht und die Terms of Service der jeweiligen Plattformen.
|
| 9 |
-
|
| 10 |
-
Benötigt:
|
| 11 |
-
- ffmpeg (systemweit)
|
| 12 |
-
- Python-Pakete siehe requirements.txt
|
| 13 |
"""
|
| 14 |
import os
|
| 15 |
import subprocess
|
|
@@ -20,60 +12,41 @@ from datetime import timedelta
|
|
| 20 |
|
| 21 |
import gradio as gr
|
| 22 |
|
| 23 |
-
# Versuch, whisper zu importieren (installiert via requirements.txt as git+repo)
|
| 24 |
try:
|
| 25 |
import whisper
|
| 26 |
-
except Exception
|
| 27 |
whisper = None
|
| 28 |
|
| 29 |
-
# Hilfsfunktionen ----------------------------------------------------------
|
| 30 |
-
|
| 31 |
-
|
| 32 |
def run(cmd, hide_output=False):
|
| 33 |
-
"""Run shell command, raise on error."""
|
| 34 |
if hide_output:
|
| 35 |
subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
| 36 |
else:
|
| 37 |
subprocess.run(cmd, check=True)
|
| 38 |
|
| 39 |
-
|
| 40 |
def download_video_with_ytdlp(url: str, out_dir: str) -> str:
|
| 41 |
-
"""Download best video using yt-dlp into out_dir, return filepath"""
|
| 42 |
out_template = str(Path(out_dir) / "%(title)s.%(ext)s")
|
| 43 |
cmd = ["yt-dlp", "-f", "best", "-o", out_template, url]
|
| 44 |
run(cmd)
|
| 45 |
-
# pick most recently modified file
|
| 46 |
files = sorted(Path(out_dir).glob("*"), key=lambda p: p.stat().st_mtime, reverse=True)
|
| 47 |
if not files:
|
| 48 |
-
raise FileNotFoundError("Download
|
| 49 |
return str(files[0])
|
| 50 |
|
| 51 |
-
|
| 52 |
def extract_audio_ffmpeg(video_path: str, out_wav: str):
|
| 53 |
-
"""Extract mono 16k WAV for Whisper"""
|
| 54 |
cmd = [
|
| 55 |
-
"ffmpeg",
|
| 56 |
-
"-
|
| 57 |
-
"-i", video_path,
|
| 58 |
-
"-vn",
|
| 59 |
-
"-ac", "1",
|
| 60 |
-
"-ar", "16000",
|
| 61 |
-
"-f", "wav",
|
| 62 |
-
out_wav
|
| 63 |
]
|
| 64 |
run(cmd, hide_output=True)
|
| 65 |
return out_wav
|
| 66 |
|
| 67 |
-
|
| 68 |
-
def seconds_to_timestamp(s: float, always_ms: bool = True) -> str:
|
| 69 |
-
"""Convert seconds (float) to SRT/VTT time format HH:MM:SS,mmm"""
|
| 70 |
hours = int(s // 3600)
|
| 71 |
minutes = int((s % 3600) // 60)
|
| 72 |
seconds = int(s % 60)
|
| 73 |
ms = int(round((s - int(s)) * 1000))
|
| 74 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{ms:03d}"
|
| 75 |
|
| 76 |
-
|
| 77 |
def format_timestamp_vtt(s: float) -> str:
|
| 78 |
hours = int(s // 3600)
|
| 79 |
minutes = int((s % 3600) // 60)
|
|
@@ -81,90 +54,108 @@ def format_timestamp_vtt(s: float) -> str:
|
|
| 81 |
ms = int(round((s - int(s)) * 1000))
|
| 82 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{ms:03d}"
|
| 83 |
|
| 84 |
-
|
| 85 |
def segments_to_srt(segments):
|
| 86 |
-
|
| 87 |
-
parts = []
|
| 88 |
for i, seg in enumerate(segments, start=1):
|
| 89 |
start = seconds_to_timestamp(seg['start'])
|
| 90 |
end = seconds_to_timestamp(seg['end'])
|
| 91 |
text = seg['text'].strip()
|
| 92 |
-
|
| 93 |
-
return "\n".join(
|
| 94 |
-
|
| 95 |
|
| 96 |
def segments_to_vtt(segments):
|
| 97 |
-
|
| 98 |
-
parts = ["WEBVTT\n"]
|
| 99 |
for seg in segments:
|
| 100 |
start = format_timestamp_vtt(seg['start'])
|
| 101 |
end = format_timestamp_vtt(seg['end'])
|
| 102 |
text = seg['text'].strip()
|
| 103 |
-
|
| 104 |
-
return "\n".join(
|
| 105 |
-
|
| 106 |
|
| 107 |
def segments_to_txt(segments):
|
| 108 |
-
"""
|
| 109 |
-
lines = []
|
| 110 |
-
for seg in segments:
|
| 111 |
-
start = seconds_to_timestamp(seg['start'])
|
| 112 |
-
text = seg['text'].strip()
|
| 113 |
-
lines.append(f"[{start}] {text}")
|
| 114 |
-
return "\n".join(lines)
|
| 115 |
-
|
| 116 |
|
| 117 |
def segments_to_json(segments, language=None, metadata=None):
|
| 118 |
-
|
| 119 |
-
"language": language,
|
| 120 |
-
"segments": segments
|
| 121 |
-
}
|
| 122 |
if metadata:
|
| 123 |
-
|
| 124 |
-
return json.dumps(
|
| 125 |
-
|
| 126 |
-
# Haupt-Workflow ----------------------------------------------------------
|
| 127 |
|
| 128 |
def transcribe_pipeline(file_obj, url, model_size, keep_video=False):
|
| 129 |
-
"""
|
| 130 |
-
file_obj: uploaded file (temp path) or None
|
| 131 |
-
url: optional URL to download via yt-dlp
|
| 132 |
-
model_size: whisper model size
|
| 133 |
-
"""
|
| 134 |
if whisper is None:
|
| 135 |
-
return "Fehler:
|
| 136 |
|
| 137 |
tmpdir = tempfile.mkdtemp(prefix="whisper_space_")
|
| 138 |
try:
|
| 139 |
-
# 1) Get video path either from uploaded file or by downloading URL
|
| 140 |
if url:
|
| 141 |
video_path = download_video_with_ytdlp(url, tmpdir)
|
| 142 |
elif file_obj:
|
| 143 |
-
# file_obj is a tuple (name, file-like) or a path depending on Gradio version.
|
| 144 |
-
# Gradio typically supplies a filesystem path.
|
| 145 |
if isinstance(file_obj, str) and os.path.exists(file_obj):
|
| 146 |
video_path = file_obj
|
| 147 |
else:
|
| 148 |
-
# try to write content to temp file
|
| 149 |
uploaded_path = Path(tmpdir) / Path(getattr(file_obj, "name", "upload")).name
|
| 150 |
with open(uploaded_path, "wb") as f:
|
| 151 |
-
# file_obj may be a SpooledTemporaryFile or similar with .read()
|
| 152 |
f.write(file_obj.read())
|
| 153 |
video_path = str(uploaded_path)
|
| 154 |
else:
|
| 155 |
-
return "Kein Video angegeben
|
| 156 |
|
| 157 |
-
# 2) Extract audio
|
| 158 |
audio_wav = str(Path(tmpdir) / "audio.wav")
|
| 159 |
extract_audio_ffmpeg(video_path, audio_wav)
|
| 160 |
|
| 161 |
-
# 3) Load whisper model and transcribe
|
| 162 |
model = whisper.load_model(model_size)
|
| 163 |
-
# transcribe: get segments to generate SRT/VTT etc.
|
| 164 |
result = model.transcribe(audio_wav, verbose=False)
|
| 165 |
segments = result.get("segments", [])
|
| 166 |
-
language = result.get("language",
|
| 167 |
|
| 168 |
-
# 4) Create output strings
|
| 169 |
srt_text = segments_to_srt(segments)
|
| 170 |
-
vtt_text = segments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
# -*- coding: utf-8 -*-
|
| 3 |
"""
|
| 4 |
Hugging Face Space (Gradio) App: Video -> Audio -> Whisper Transkript (+ Downloads SRT/TXT/VTT/JSON)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
import os
|
| 7 |
import subprocess
|
|
|
|
| 12 |
|
| 13 |
import gradio as gr
|
| 14 |
|
|
|
|
| 15 |
try:
|
| 16 |
import whisper
|
| 17 |
+
except Exception:
|
| 18 |
whisper = None
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
def run(cmd, hide_output=False):
|
|
|
|
| 21 |
if hide_output:
|
| 22 |
subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
| 23 |
else:
|
| 24 |
subprocess.run(cmd, check=True)
|
| 25 |
|
|
|
|
| 26 |
def download_video_with_ytdlp(url: str, out_dir: str) -> str:
|
|
|
|
| 27 |
out_template = str(Path(out_dir) / "%(title)s.%(ext)s")
|
| 28 |
cmd = ["yt-dlp", "-f", "best", "-o", out_template, url]
|
| 29 |
run(cmd)
|
|
|
|
| 30 |
files = sorted(Path(out_dir).glob("*"), key=lambda p: p.stat().st_mtime, reverse=True)
|
| 31 |
if not files:
|
| 32 |
+
raise FileNotFoundError("Download fehlgeschlagen — keine Datei gefunden.")
|
| 33 |
return str(files[0])
|
| 34 |
|
|
|
|
| 35 |
def extract_audio_ffmpeg(video_path: str, out_wav: str):
|
|
|
|
| 36 |
cmd = [
|
| 37 |
+
"ffmpeg", "-y", "-i", video_path,
|
| 38 |
+
"-vn", "-ac", "1", "-ar", "16000", "-f", "wav", out_wav
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
]
|
| 40 |
run(cmd, hide_output=True)
|
| 41 |
return out_wav
|
| 42 |
|
| 43 |
+
def seconds_to_timestamp(s: float) -> str:
|
|
|
|
|
|
|
| 44 |
hours = int(s // 3600)
|
| 45 |
minutes = int((s % 3600) // 60)
|
| 46 |
seconds = int(s % 60)
|
| 47 |
ms = int(round((s - int(s)) * 1000))
|
| 48 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{ms:03d}"
|
| 49 |
|
|
|
|
| 50 |
def format_timestamp_vtt(s: float) -> str:
|
| 51 |
hours = int(s // 3600)
|
| 52 |
minutes = int((s % 3600) // 60)
|
|
|
|
| 54 |
ms = int(round((s - int(s)) * 1000))
|
| 55 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{ms:03d}"
|
| 56 |
|
|
|
|
| 57 |
def segments_to_srt(segments):
|
| 58 |
+
out = []
|
|
|
|
| 59 |
for i, seg in enumerate(segments, start=1):
|
| 60 |
start = seconds_to_timestamp(seg['start'])
|
| 61 |
end = seconds_to_timestamp(seg['end'])
|
| 62 |
text = seg['text'].strip()
|
| 63 |
+
out.append(f"{i}\n{start} --> {end}\n{text}\n")
|
| 64 |
+
return "\n".join(out)
|
|
|
|
| 65 |
|
| 66 |
def segments_to_vtt(segments):
|
| 67 |
+
out = ["WEBVTT\n"]
|
|
|
|
| 68 |
for seg in segments:
|
| 69 |
start = format_timestamp_vtt(seg['start'])
|
| 70 |
end = format_timestamp_vtt(seg['end'])
|
| 71 |
text = seg['text'].strip()
|
| 72 |
+
out.append(f"{start} --> {end}\n{text}\n")
|
| 73 |
+
return "\n".join(out)
|
|
|
|
| 74 |
|
| 75 |
def segments_to_txt(segments):
|
| 76 |
+
return "\n".join([f"[{seconds_to_timestamp(seg['start'])}] {seg['text'].strip()}" for seg in segments])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
def segments_to_json(segments, language=None, metadata=None):
|
| 79 |
+
data = {"language": language, "segments": segments}
|
|
|
|
|
|
|
|
|
|
| 80 |
if metadata:
|
| 81 |
+
data["metadata"] = metadata
|
| 82 |
+
return json.dumps(data, ensure_ascii=False, indent=2)
|
|
|
|
|
|
|
| 83 |
|
| 84 |
def transcribe_pipeline(file_obj, url, model_size, keep_video=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
if whisper is None:
|
| 86 |
+
return "Fehler: whisper ist nicht installiert.", None, None, None, None, None
|
| 87 |
|
| 88 |
tmpdir = tempfile.mkdtemp(prefix="whisper_space_")
|
| 89 |
try:
|
|
|
|
| 90 |
if url:
|
| 91 |
video_path = download_video_with_ytdlp(url, tmpdir)
|
| 92 |
elif file_obj:
|
|
|
|
|
|
|
| 93 |
if isinstance(file_obj, str) and os.path.exists(file_obj):
|
| 94 |
video_path = file_obj
|
| 95 |
else:
|
|
|
|
| 96 |
uploaded_path = Path(tmpdir) / Path(getattr(file_obj, "name", "upload")).name
|
| 97 |
with open(uploaded_path, "wb") as f:
|
|
|
|
| 98 |
f.write(file_obj.read())
|
| 99 |
video_path = str(uploaded_path)
|
| 100 |
else:
|
| 101 |
+
return "Kein Video angegeben.", None, None, None, None, None
|
| 102 |
|
|
|
|
| 103 |
audio_wav = str(Path(tmpdir) / "audio.wav")
|
| 104 |
extract_audio_ffmpeg(video_path, audio_wav)
|
| 105 |
|
|
|
|
| 106 |
model = whisper.load_model(model_size)
|
|
|
|
| 107 |
result = model.transcribe(audio_wav, verbose=False)
|
| 108 |
segments = result.get("segments", [])
|
| 109 |
+
language = result.get("language", "unknown")
|
| 110 |
|
|
|
|
| 111 |
srt_text = segments_to_srt(segments)
|
| 112 |
+
vtt_text = segments_to_vtt(segments)
|
| 113 |
+
txt_text = segments_to_txt(segments)
|
| 114 |
+
json_text = segments_to_json(segments, language, {"model": model_size})
|
| 115 |
+
|
| 116 |
+
out_files = {}
|
| 117 |
+
base = Path(video_path).stem
|
| 118 |
+
for ext, content in {"srt": srt_text, "vtt": vtt_text, "txt": txt_text, "json": json_text}.items():
|
| 119 |
+
p = Path(tmpdir) / f"{base}.{ext}"
|
| 120 |
+
p.write_text(content, encoding="utf-8")
|
| 121 |
+
out_files[ext] = str(p)
|
| 122 |
+
|
| 123 |
+
display_text = txt_text
|
| 124 |
+
|
| 125 |
+
if not keep_video and url:
|
| 126 |
+
try:
|
| 127 |
+
os.remove(video_path)
|
| 128 |
+
except Exception:
|
| 129 |
+
pass
|
| 130 |
+
|
| 131 |
+
return display_text, out_files["srt"], out_files["vtt"], out_files["txt"], out_files["json"], f"Model: {model_size}, Sprache: {language}"
|
| 132 |
+
except Exception as e:
|
| 133 |
+
return f"Fehler: {e}", None, None, None, None, None
|
| 134 |
+
finally:
|
| 135 |
+
pass
|
| 136 |
+
|
| 137 |
+
with gr.Blocks() as demo:
|
| 138 |
+
gr.Markdown("# Video → Whisper Transkript (SRT/TXT/VTT/JSON)")
|
| 139 |
+
with gr.Row():
|
| 140 |
+
with gr.Column():
|
| 141 |
+
url_in = gr.Textbox(label="Video URL", placeholder="https://...")
|
| 142 |
+
file_in = gr.File(label="Oder Videodatei hochladen")
|
| 143 |
+
model_sel = gr.Radio(["tiny", "base", "small", "medium", "large"], value="small", label="Whisper-Modell")
|
| 144 |
+
keep_chk = gr.Checkbox(label="Video behalten", value=False)
|
| 145 |
+
btn = gr.Button("Transkribieren")
|
| 146 |
+
status = gr.Textbox(label="Status")
|
| 147 |
+
with gr.Column():
|
| 148 |
+
transcript = gr.Textbox(label="Transkript mit Zeitmarken", lines=20)
|
| 149 |
+
srt_dl = gr.File(label="SRT", visible=False)
|
| 150 |
+
vtt_dl = gr.File(label="VTT", visible=False)
|
| 151 |
+
txt_dl = gr.File(label="TXT", visible=False)
|
| 152 |
+
json_dl = gr.File(label="JSON", visible=False)
|
| 153 |
+
|
| 154 |
+
def run_transcribe(f, u, m, k):
|
| 155 |
+
display, srtf, vttf, txtf, jsonf, meta = transcribe_pipeline(f, u, m, k)
|
| 156 |
+
return display, gr.update(value=srtf, visible=bool(srtf)), gr.update(value=vttf, visible=bool(vttf)), gr.update(value=txtf, visible=bool(txtf)), gr.update(value=jsonf, visible=bool(jsonf)), meta
|
| 157 |
+
|
| 158 |
+
btn.click(run_transcribe, [file_in, url_in, model_sel, keep_chk], [transcript, srt_dl, vtt_dl, txt_dl, json_dl, status])
|
| 159 |
+
|
| 160 |
+
if __name__ == "__main__":
|
| 161 |
+
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|