File size: 5,505 Bytes
b5cc7ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c6dc9
b5cc7ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c6dc9
b5cc7ad
 
 
 
 
 
 
12c6dc9
b5cc7ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c6dc9
 
b5cc7ad
12c6dc9
b5cc7ad
 
12c6dc9
b5cc7ad
 
12c6dc9
b5cc7ad
 
 
12c6dc9
 
 
b5cc7ad
12c6dc9
 
b5cc7ad
12c6dc9
b5cc7ad
12c6dc9
 
 
 
 
 
 
 
 
 
 
b5cc7ad
 
12c6dc9
b5cc7ad
12c6dc9
b5cc7ad
 
 
12c6dc9
 
 
 
 
 
b5cc7ad
 
12c6dc9
 
 
 
 
 
 
 
 
 
b5cc7ad
 
12c6dc9
b5cc7ad
12c6dc9
 
 
 
 
 
 
b5cc7ad
455acb1
b5cc7ad
455acb1
b5cc7ad
 
 
 
 
 
 
12c6dc9
455acb1
 
 
 
 
 
b5cc7ad
 
 
 
455acb1
 
 
 
b5cc7ad
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
from dotenv import load_dotenv
import logging
import json
import hashlib
from collections import defaultdict
from concurrent.futures import ProcessPoolExecutor, as_completed

import spacy
import nltk
from nltk.corpus import wordnet as wn
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
import gradio as gr

nltk.download('punkt_tab')

load_dotenv()
# Configuration
CONFIG = {
    'HF_TOKEN': os.getenv('HF_TOKEN'),
    'SPACY_MODEL': 'en_core_web_sm',
    'LOG_LEVEL': logging.INFO,
}

# Setup logging
logging.basicConfig(level=CONFIG['LOG_LEVEL'], format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Set environment variables
os.environ['HF_TOKEN'] = CONFIG['HF_TOKEN']

# Download required NLTK data
nltk.download('wordnet', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('punkt', quiet=True)

# Load spaCy model
try:
    nlp = spacy.load(CONFIG['SPACY_MODEL'])
except IOError:
    logger.info("Downloading spaCy model...")
    spacy.cli.download(CONFIG['SPACY_MODEL'])
    nlp = spacy.load(CONFIG['SPACY_MODEL'])


def get_wordnet_pos(treebank_tag):
    """Map POS tag to first character used by WordNet."""
    tag_map = {
        'J': wn.ADJ, 'V': wn.VERB, 'N': wn.NOUN, 'R': wn.ADV
    }
    return tag_map.get(treebank_tag[0], None)


def lesk_algorithm(word, sentence, pos=None):
    """Implement the Lesk algorithm for word sense disambiguation."""
    word = word.lower()
    context = set(word_tokenize(sentence.lower()))
    best_sense = None
    max_overlap = 0

    for synset in wn.synsets(word):
        if pos and synset.pos() != pos:
            continue
        signature = set(word_tokenize(synset.definition().lower()))
        for example in synset.examples():
            signature.update(set(word_tokenize(example.lower())))
        overlap = len(signature.intersection(context))
        if overlap > max_overlap:
            max_overlap = overlap
            best_sense = synset

    return best_sense


def create_unique_index(word, meaning):
    """Create a unique index for each word-meaning pair."""
    combined = f"{word}_{meaning}".encode('utf-8')
    return hashlib.md5(combined).hexdigest()


def is_meaningful_word(token):
    """Check if a word is meaningful and should be included in the analysis."""
    return (not token.is_stop and  # Exclude stop words
            token.pos_ not in ['PUNCT', 'SYM', 'X'] and  # Exclude punctuation, symbols, and other
            len(token.text) > 1)  # Exclude single-character tokens




def process_sentence(sent):
    """Process a single sentence and return word information in order."""
    word_info = []
    doc = nlp(sent)

    for token in doc:
        if token.is_punct:
            word_info.append({
                "original": token.text,
                "type": "punctuation"
            })
        elif token.is_space:
            word_info.append({
                "original": token.text,
                "type": "space"
            })
        else:
            word = token.text.lower()
            wordnet_pos = get_wordnet_pos(token.tag_)

            best_sense = lesk_algorithm(word, sent, wordnet_pos)

            if best_sense:
                definition = best_sense.definition()
                pos = best_sense.pos()

                unique_index = create_unique_index(word, definition)

                word_info.append({
                    "original": token.text,
                    "lemma": token.lemma_,
                    "index": unique_index,
                    "meaning": definition,
                    "POS": pos
                })
            else:
                word_info.append({
                    "original": token.text,
                    "type": "unknown"
                })

    return word_info


def get_word_info(text):
    """Get word information for all sentences in the text, preserving sentence structure."""
    sentences = nltk.sent_tokenize(text)
    all_word_info = []

    for sent in sentences:
        sentence_info = process_sentence(sent)
        all_word_info.append(sentence_info)

    return all_word_info

def process_text(selected_text, user_text):
    """Process the input text and return JSON results."""
    text = user_text if user_text.strip() != "" else selected_text
    try:
        word_info = get_word_info(text)
        return json.dumps(word_info, indent=2)
    except Exception as e:
        logger.error(f"Error processing text: {str(e)}")
        return json.dumps({"error": "An error occurred while processing the text."})


# Sample texts
examples = [
    "The chef will season the steak with salt and pepper before grilling. Pumpkin spice lattes usually season the arrival of autumn.",
    "The gardener will plant tulips in the spring. Cherry blossoms signify the beginning of warmer weather.",
    "The artist will paint the sunset over the mountains. Bright colors often capture the vibrancy of summer."
]

# Gradio Interface
iface = gr.Interface(
    fn=process_text,
    inputs=[
        gr.Dropdown(choices=examples, label="Select a sample text"),
        gr.Textbox(lines=5, label="Or enter your own text here", placeholder="Enter your text here...")
    ],
    outputs=gr.JSON(label="Results"),
    title="Improved Word Sense Disambiguation API",
    description="This API performs word sense disambiguation with special focus on 'season' and returns results in JSON format."
)

if __name__ == "__main__":
    iface.launch()