Spaces:
Running
Running
| import os | |
| import shutil | |
| import urllib.request | |
| import zipfile | |
| import gdown | |
| import requests | |
| import gradio as gr | |
| from mega import Mega | |
| BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
| rvc_models_dir = os.path.join(BASE_DIR, 'rvc_models') | |
| def ignore_files(models_dir): | |
| models_list = os.listdir(models_dir) | |
| items_to_remove = ['hubert_base.pt', 'MODELS.txt', 'rmvpe.pt', 'fcpe.pt'] | |
| return [item for item in models_list if item not in items_to_remove] | |
| def update_models_list(): | |
| models_l = ignore_files(rvc_models_dir) | |
| return gr.update(choices=models_l) | |
| def extract_zip(extraction_folder, zip_name): | |
| os.makedirs(extraction_folder, exist_ok=True) | |
| with zipfile.ZipFile(zip_name, 'r') as zip_ref: | |
| zip_ref.extractall(extraction_folder) | |
| os.remove(zip_name) | |
| index_filepath, model_filepath = None, None | |
| for root, _, files in os.walk(extraction_folder): | |
| for name in files: | |
| if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100: | |
| index_filepath = os.path.join(root, name) | |
| if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40: | |
| model_filepath = os.path.join(root, name) | |
| if not model_filepath: | |
| raise gr.Error(f'The .pth model file was not found in the unzipped zip file. Please check the {extraction_folder}.') | |
| os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath))) | |
| if index_filepath: | |
| os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath))) | |
| for filepath in os.listdir(extraction_folder): | |
| if os.path.isdir(os.path.join(extraction_folder, filepath)): | |
| shutil.rmtree(os.path.join(extraction_folder, filepath)) | |
| def download_from_url(url, dir_name, progress=gr.Progress()): | |
| try: | |
| progress(0, desc=f'[~] Downloading voice model named {dir_name}...') | |
| zip_name = os.path.join(rvc_models_dir, dir_name + '.zip') | |
| extraction_folder = os.path.join(rvc_models_dir, dir_name) | |
| if os.path.exists(extraction_folder): | |
| raise gr.Error(f'The voice model directory {dir_name} already exists! Please choose a different name for your voice model.') | |
| if 'drive.google.com' in url: | |
| progress(0.5, desc='[~] Downloading model from Google Grive...') | |
| file_id = url.split("file/d/")[1].split("/")[0] if "file/d/" in url else url.split("id=")[1].split("&")[0] | |
| output = zip_name | |
| gdown.download(id=file_id, output=output, quiet=False) | |
| elif 'huggingface.co' in url: | |
| progress(0.5, desc='[~] Downloading model from HuggingFace...') | |
| urllib.request.urlretrieve(url, zip_name) | |
| elif 'pixeldrain.com' in url: | |
| progress(0.5, desc='[~] Downloading model from Pixeldrain...') | |
| file_id = url.split("pixeldrain.com/u/")[1] | |
| response = requests.get(f"https://pixeldrain.com/api/file/{file_id}") | |
| with open(zip_name, 'wb') as f: | |
| f.write(response.content) | |
| elif 'mega.nz' in url: | |
| progress(0.5, desc='[~] Downloading model from Mega...') | |
| m = Mega() | |
| m.download_url(url, dest_filename=zip_name) | |
| elif 'yadi.sk' in url or 'disk.yandex.ru' in url: | |
| progress(0.5, desc='[~] Downloading model from Yandex Disk...') | |
| yandex_api_url = "https://cloud-api.yandex.net/v1/disk/public/resources/download?public_key={}".format(url) | |
| response = requests.get(yandex_api_url) | |
| if response.status_code == 200: | |
| download_link = response.json().get('href') | |
| urllib.request.urlretrieve(download_link, zip_name) | |
| else: | |
| raise gr.Error(f"Error when receiving a download link from Yandex Disk: {response.status_code}") | |
| progress(0.8, desc='[~] Extracting zip file...') | |
| extract_zip(extraction_folder, zip_name) | |
| return f'[+] The {dir_name} model was loaded successfully!' | |
| except Exception as e: | |
| raise gr.Error(str(e)) | |
| def upload_zip_model(zip_path, dir_name, progress=gr.Progress()): | |
| try: | |
| extraction_folder = os.path.join(rvc_models_dir, dir_name) | |
| if os.path.exists(extraction_folder): | |
| raise gr.Error(f'The voice model directory {dir_name} already exists! Choose a different name for your voice model.') | |
| zip_name = zip_path.name | |
| progress(0.8, desc='[~] Extracting zip file...') | |
| extract_zip(extraction_folder, zip_name) | |
| return f'[+] The {dir_name} model was loaded successfully!' | |
| except Exception as e: | |
| raise gr.Error(str(e)) | |
| def upload_separate_files(pth_file, index_file, dir_name, progress=gr.Progress()): | |
| try: | |
| extraction_folder = os.path.join(rvc_models_dir, dir_name) | |
| if os.path.exists(extraction_folder): | |
| raise gr.Error(f'The voice model directory {dir_name} already exists! Choose a different name for your voice model.') | |
| os.makedirs(extraction_folder, exist_ok=True) | |
| if pth_file: | |
| pth_path = os.path.join(extraction_folder, os.path.basename(pth_file.name)) | |
| shutil.copyfile(pth_file.name, pth_path) | |
| if index_file: | |
| index_path = os.path.join(extraction_folder, os.path.basename(index_file.name)) | |
| shutil.copyfile(index_file.name, index_path) | |
| return f'[+] The {dir_name} model was loaded successfully!' | |
| except Exception as e: | |
| raise gr.Error(str(e)) |