Spaces:
Runtime error
Runtime error
DJQmUKV
commited on
Commit
·
71ed4b2
1
Parent(s):
1c262c1
fix: wrong version of vc_infer_pipeline.py
Browse files- vc_infer_pipeline.py +363 -165
vc_infer_pipeline.py
CHANGED
|
@@ -1,165 +1,363 @@
|
|
| 1 |
-
import numpy as np,parselmouth,torch,pdb
|
| 2 |
-
from time import time as ttime
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
if(
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
return
|
| 108 |
-
|
| 109 |
-
def
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np, parselmouth, torch, pdb
|
| 2 |
+
from time import time as ttime
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import scipy.signal as signal
|
| 5 |
+
import pyworld, os, traceback, faiss,librosa
|
| 6 |
+
from scipy import signal
|
| 7 |
+
from functools import lru_cache
|
| 8 |
+
|
| 9 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
| 10 |
+
|
| 11 |
+
input_audio_path2wav={}
|
| 12 |
+
@lru_cache
|
| 13 |
+
def cache_harvest_f0(input_audio_path,fs,f0max,f0min,frame_period):
|
| 14 |
+
audio=input_audio_path2wav[input_audio_path]
|
| 15 |
+
f0, t = pyworld.harvest(
|
| 16 |
+
audio,
|
| 17 |
+
fs=fs,
|
| 18 |
+
f0_ceil=f0max,
|
| 19 |
+
f0_floor=f0min,
|
| 20 |
+
frame_period=frame_period,
|
| 21 |
+
)
|
| 22 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
| 23 |
+
return f0
|
| 24 |
+
|
| 25 |
+
def change_rms(data1,sr1,data2,sr2,rate):#1是输入音频,2是输出音频,rate是2的占比
|
| 26 |
+
# print(data1.max(),data2.max())
|
| 27 |
+
rms1 = librosa.feature.rms(y=data1, frame_length=sr1//2*2, hop_length=sr1//2)#每半秒一个点
|
| 28 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2//2*2, hop_length=sr2//2)
|
| 29 |
+
rms1=torch.from_numpy(rms1)
|
| 30 |
+
rms1=F.interpolate(rms1.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
|
| 31 |
+
rms2=torch.from_numpy(rms2)
|
| 32 |
+
rms2=F.interpolate(rms2.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
|
| 33 |
+
rms2=torch.max(rms2,torch.zeros_like(rms2)+1e-6)
|
| 34 |
+
data2*=(torch.pow(rms1,torch.tensor(1-rate))*torch.pow(rms2,torch.tensor(rate-1))).numpy()
|
| 35 |
+
return data2
|
| 36 |
+
|
| 37 |
+
class VC(object):
|
| 38 |
+
def __init__(self, tgt_sr, config):
|
| 39 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
| 40 |
+
config.x_pad,
|
| 41 |
+
config.x_query,
|
| 42 |
+
config.x_center,
|
| 43 |
+
config.x_max,
|
| 44 |
+
config.is_half,
|
| 45 |
+
)
|
| 46 |
+
self.sr = 16000 # hubert输入采样率
|
| 47 |
+
self.window = 160 # 每帧点数
|
| 48 |
+
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
| 49 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
| 50 |
+
self.t_pad2 = self.t_pad * 2
|
| 51 |
+
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
| 52 |
+
self.t_center = self.sr * self.x_center # 查询切点位置
|
| 53 |
+
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
| 54 |
+
self.device = config.device
|
| 55 |
+
|
| 56 |
+
def get_f0(self, input_audio_path,x, p_len, f0_up_key, f0_method,filter_radius, inp_f0=None):
|
| 57 |
+
global input_audio_path2wav
|
| 58 |
+
time_step = self.window / self.sr * 1000
|
| 59 |
+
f0_min = 50
|
| 60 |
+
f0_max = 1100
|
| 61 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 62 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 63 |
+
if f0_method == "pm":
|
| 64 |
+
f0 = (
|
| 65 |
+
parselmouth.Sound(x, self.sr)
|
| 66 |
+
.to_pitch_ac(
|
| 67 |
+
time_step=time_step / 1000,
|
| 68 |
+
voicing_threshold=0.6,
|
| 69 |
+
pitch_floor=f0_min,
|
| 70 |
+
pitch_ceiling=f0_max,
|
| 71 |
+
)
|
| 72 |
+
.selected_array["frequency"]
|
| 73 |
+
)
|
| 74 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
| 75 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 76 |
+
f0 = np.pad(
|
| 77 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
| 78 |
+
)
|
| 79 |
+
elif f0_method == "harvest":
|
| 80 |
+
input_audio_path2wav[input_audio_path]=x.astype(np.double)
|
| 81 |
+
f0=cache_harvest_f0(input_audio_path,self.sr,f0_max,f0_min,10)
|
| 82 |
+
if(filter_radius>2):
|
| 83 |
+
f0 = signal.medfilt(f0, 3)
|
| 84 |
+
f0 *= pow(2, f0_up_key / 12)
|
| 85 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 86 |
+
tf0 = self.sr // self.window # 每秒f0点数
|
| 87 |
+
if inp_f0 is not None:
|
| 88 |
+
delta_t = np.round(
|
| 89 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
| 90 |
+
).astype("int16")
|
| 91 |
+
replace_f0 = np.interp(
|
| 92 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
| 93 |
+
)
|
| 94 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
| 95 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
| 96 |
+
:shape
|
| 97 |
+
]
|
| 98 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 99 |
+
f0bak = f0.copy()
|
| 100 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 101 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
| 102 |
+
f0_mel_max - f0_mel_min
|
| 103 |
+
) + 1
|
| 104 |
+
f0_mel[f0_mel <= 1] = 1
|
| 105 |
+
f0_mel[f0_mel > 255] = 255
|
| 106 |
+
f0_coarse = np.rint(f0_mel).astype(int)
|
| 107 |
+
return f0_coarse, f0bak # 1-0
|
| 108 |
+
|
| 109 |
+
def vc(
|
| 110 |
+
self,
|
| 111 |
+
model,
|
| 112 |
+
net_g,
|
| 113 |
+
sid,
|
| 114 |
+
audio0,
|
| 115 |
+
pitch,
|
| 116 |
+
pitchf,
|
| 117 |
+
times,
|
| 118 |
+
index,
|
| 119 |
+
big_npy,
|
| 120 |
+
index_rate,
|
| 121 |
+
version,
|
| 122 |
+
): # ,file_index,file_big_npy
|
| 123 |
+
feats = torch.from_numpy(audio0)
|
| 124 |
+
if self.is_half:
|
| 125 |
+
feats = feats.half()
|
| 126 |
+
else:
|
| 127 |
+
feats = feats.float()
|
| 128 |
+
if feats.dim() == 2: # double channels
|
| 129 |
+
feats = feats.mean(-1)
|
| 130 |
+
assert feats.dim() == 1, feats.dim()
|
| 131 |
+
feats = feats.view(1, -1)
|
| 132 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
| 133 |
+
|
| 134 |
+
inputs = {
|
| 135 |
+
"source": feats.to(self.device),
|
| 136 |
+
"padding_mask": padding_mask,
|
| 137 |
+
"output_layer": 9 if version == "v1" else 12,
|
| 138 |
+
}
|
| 139 |
+
t0 = ttime()
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
logits = model.extract_features(**inputs)
|
| 142 |
+
feats = model.final_proj(logits[0])if version=="v1"else logits[0]
|
| 143 |
+
|
| 144 |
+
if (
|
| 145 |
+
isinstance(index, type(None)) == False
|
| 146 |
+
and isinstance(big_npy, type(None)) == False
|
| 147 |
+
and index_rate != 0
|
| 148 |
+
):
|
| 149 |
+
npy = feats[0].cpu().numpy()
|
| 150 |
+
if self.is_half:
|
| 151 |
+
npy = npy.astype("float32")
|
| 152 |
+
|
| 153 |
+
# _, I = index.search(npy, 1)
|
| 154 |
+
# npy = big_npy[I.squeeze()]
|
| 155 |
+
|
| 156 |
+
score, ix = index.search(npy, k=8)
|
| 157 |
+
weight = np.square(1 / score)
|
| 158 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
| 159 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
| 160 |
+
|
| 161 |
+
if self.is_half:
|
| 162 |
+
npy = npy.astype("float16")
|
| 163 |
+
feats = (
|
| 164 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
| 165 |
+
+ (1 - index_rate) * feats
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
| 169 |
+
t1 = ttime()
|
| 170 |
+
p_len = audio0.shape[0] // self.window
|
| 171 |
+
if feats.shape[1] < p_len:
|
| 172 |
+
p_len = feats.shape[1]
|
| 173 |
+
if pitch != None and pitchf != None:
|
| 174 |
+
pitch = pitch[:, :p_len]
|
| 175 |
+
pitchf = pitchf[:, :p_len]
|
| 176 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
| 177 |
+
with torch.no_grad():
|
| 178 |
+
if pitch != None and pitchf != None:
|
| 179 |
+
audio1 = (
|
| 180 |
+
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
|
| 181 |
+
.data.cpu()
|
| 182 |
+
.float()
|
| 183 |
+
.numpy()
|
| 184 |
+
)
|
| 185 |
+
else:
|
| 186 |
+
audio1 = (
|
| 187 |
+
(net_g.infer(feats, p_len, sid)[0][0, 0])
|
| 188 |
+
.data.cpu()
|
| 189 |
+
.float()
|
| 190 |
+
.numpy()
|
| 191 |
+
)
|
| 192 |
+
del feats, p_len, padding_mask
|
| 193 |
+
if torch.cuda.is_available():
|
| 194 |
+
torch.cuda.empty_cache()
|
| 195 |
+
t2 = ttime()
|
| 196 |
+
times[0] += t1 - t0
|
| 197 |
+
times[2] += t2 - t1
|
| 198 |
+
return audio1
|
| 199 |
+
|
| 200 |
+
def pipeline(
|
| 201 |
+
self,
|
| 202 |
+
model,
|
| 203 |
+
net_g,
|
| 204 |
+
sid,
|
| 205 |
+
audio,
|
| 206 |
+
input_audio_path,
|
| 207 |
+
times,
|
| 208 |
+
f0_up_key,
|
| 209 |
+
f0_method,
|
| 210 |
+
file_index,
|
| 211 |
+
# file_big_npy,
|
| 212 |
+
index_rate,
|
| 213 |
+
if_f0,
|
| 214 |
+
filter_radius,
|
| 215 |
+
tgt_sr,
|
| 216 |
+
resample_sr,
|
| 217 |
+
rms_mix_rate,
|
| 218 |
+
version,
|
| 219 |
+
f0_file=None,
|
| 220 |
+
):
|
| 221 |
+
if (
|
| 222 |
+
file_index != ""
|
| 223 |
+
# and file_big_npy != ""
|
| 224 |
+
# and os.path.exists(file_big_npy) == True
|
| 225 |
+
and os.path.exists(file_index) == True
|
| 226 |
+
and index_rate != 0
|
| 227 |
+
):
|
| 228 |
+
try:
|
| 229 |
+
index = faiss.read_index(file_index)
|
| 230 |
+
# big_npy = np.load(file_big_npy)
|
| 231 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
| 232 |
+
except:
|
| 233 |
+
traceback.print_exc()
|
| 234 |
+
index = big_npy = None
|
| 235 |
+
else:
|
| 236 |
+
index = big_npy = None
|
| 237 |
+
audio = signal.filtfilt(bh, ah, audio)
|
| 238 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
| 239 |
+
opt_ts = []
|
| 240 |
+
if audio_pad.shape[0] > self.t_max:
|
| 241 |
+
audio_sum = np.zeros_like(audio)
|
| 242 |
+
for i in range(self.window):
|
| 243 |
+
audio_sum += audio_pad[i : i - self.window]
|
| 244 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
| 245 |
+
opt_ts.append(
|
| 246 |
+
t
|
| 247 |
+
- self.t_query
|
| 248 |
+
+ np.where(
|
| 249 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
| 250 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
| 251 |
+
)[0][0]
|
| 252 |
+
)
|
| 253 |
+
s = 0
|
| 254 |
+
audio_opt = []
|
| 255 |
+
t = None
|
| 256 |
+
t1 = ttime()
|
| 257 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
| 258 |
+
p_len = audio_pad.shape[0] // self.window
|
| 259 |
+
inp_f0 = None
|
| 260 |
+
if hasattr(f0_file, "name") == True:
|
| 261 |
+
try:
|
| 262 |
+
with open(f0_file.name, "r") as f:
|
| 263 |
+
lines = f.read().strip("\n").split("\n")
|
| 264 |
+
inp_f0 = []
|
| 265 |
+
for line in lines:
|
| 266 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
| 267 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
| 268 |
+
except:
|
| 269 |
+
traceback.print_exc()
|
| 270 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
| 271 |
+
pitch, pitchf = None, None
|
| 272 |
+
if if_f0 == 1:
|
| 273 |
+
pitch, pitchf = self.get_f0(input_audio_path,audio_pad, p_len, f0_up_key, f0_method,filter_radius, inp_f0)
|
| 274 |
+
pitch = pitch[:p_len]
|
| 275 |
+
pitchf = pitchf[:p_len]
|
| 276 |
+
if self.device == "mps":
|
| 277 |
+
pitchf = pitchf.astype(np.float32)
|
| 278 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
| 279 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
| 280 |
+
t2 = ttime()
|
| 281 |
+
times[1] += t2 - t1
|
| 282 |
+
for t in opt_ts:
|
| 283 |
+
t = t // self.window * self.window
|
| 284 |
+
if if_f0 == 1:
|
| 285 |
+
audio_opt.append(
|
| 286 |
+
self.vc(
|
| 287 |
+
model,
|
| 288 |
+
net_g,
|
| 289 |
+
sid,
|
| 290 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 291 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 292 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 293 |
+
times,
|
| 294 |
+
index,
|
| 295 |
+
big_npy,
|
| 296 |
+
index_rate,
|
| 297 |
+
version,
|
| 298 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 299 |
+
)
|
| 300 |
+
else:
|
| 301 |
+
audio_opt.append(
|
| 302 |
+
self.vc(
|
| 303 |
+
model,
|
| 304 |
+
net_g,
|
| 305 |
+
sid,
|
| 306 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 307 |
+
None,
|
| 308 |
+
None,
|
| 309 |
+
times,
|
| 310 |
+
index,
|
| 311 |
+
big_npy,
|
| 312 |
+
index_rate,
|
| 313 |
+
version,
|
| 314 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 315 |
+
)
|
| 316 |
+
s = t
|
| 317 |
+
if if_f0 == 1:
|
| 318 |
+
audio_opt.append(
|
| 319 |
+
self.vc(
|
| 320 |
+
model,
|
| 321 |
+
net_g,
|
| 322 |
+
sid,
|
| 323 |
+
audio_pad[t:],
|
| 324 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
| 325 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
| 326 |
+
times,
|
| 327 |
+
index,
|
| 328 |
+
big_npy,
|
| 329 |
+
index_rate,
|
| 330 |
+
version,
|
| 331 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 332 |
+
)
|
| 333 |
+
else:
|
| 334 |
+
audio_opt.append(
|
| 335 |
+
self.vc(
|
| 336 |
+
model,
|
| 337 |
+
net_g,
|
| 338 |
+
sid,
|
| 339 |
+
audio_pad[t:],
|
| 340 |
+
None,
|
| 341 |
+
None,
|
| 342 |
+
times,
|
| 343 |
+
index,
|
| 344 |
+
big_npy,
|
| 345 |
+
index_rate,
|
| 346 |
+
version,
|
| 347 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 348 |
+
)
|
| 349 |
+
audio_opt = np.concatenate(audio_opt)
|
| 350 |
+
if(rms_mix_rate!=1):
|
| 351 |
+
audio_opt=change_rms(audio,16000,audio_opt,tgt_sr,rms_mix_rate)
|
| 352 |
+
if(resample_sr>=16000 and tgt_sr!=resample_sr):
|
| 353 |
+
audio_opt = librosa.resample(
|
| 354 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
| 355 |
+
)
|
| 356 |
+
audio_max=np.abs(audio_opt).max()/0.99
|
| 357 |
+
max_int16=32768
|
| 358 |
+
if(audio_max>1):max_int16/=audio_max
|
| 359 |
+
audio_opt=(audio_opt * max_int16).astype(np.int16)
|
| 360 |
+
del pitch, pitchf, sid
|
| 361 |
+
if torch.cuda.is_available():
|
| 362 |
+
torch.cuda.empty_cache()
|
| 363 |
+
return audio_opt
|