Spaces:
Runtime error
Runtime error
| from typing import Union | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from modules.F0Predictor.F0Predictor import F0Predictor | |
| from .rmvpe import RMVPE | |
| class RMVPEF0Predictor(F0Predictor): | |
| def __init__(self,hop_length=512,f0_min=50,f0_max=1100, dtype=torch.float32, device=None,sampling_rate=44100,threshold=0.05): | |
| self.rmvpe = RMVPE(model_path="pretrain/rmvpe.pt",dtype=dtype,device=device) | |
| self.hop_length = hop_length | |
| self.f0_min = f0_min | |
| self.f0_max = f0_max | |
| if device is None: | |
| self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| else: | |
| self.device = device | |
| self.threshold = threshold | |
| self.sampling_rate = sampling_rate | |
| self.dtype = dtype | |
| self.name = "rmvpe" | |
| def repeat_expand( | |
| self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest" | |
| ): | |
| ndim = content.ndim | |
| if content.ndim == 1: | |
| content = content[None, None] | |
| elif content.ndim == 2: | |
| content = content[None] | |
| assert content.ndim == 3 | |
| is_np = isinstance(content, np.ndarray) | |
| if is_np: | |
| content = torch.from_numpy(content) | |
| results = torch.nn.functional.interpolate(content, size=target_len, mode=mode) | |
| if is_np: | |
| results = results.numpy() | |
| if ndim == 1: | |
| return results[0, 0] | |
| elif ndim == 2: | |
| return results[0] | |
| def post_process(self, x, sampling_rate, f0, pad_to): | |
| if isinstance(f0, np.ndarray): | |
| f0 = torch.from_numpy(f0).float().to(x.device) | |
| if pad_to is None: | |
| return f0 | |
| f0 = self.repeat_expand(f0, pad_to) | |
| vuv_vector = torch.zeros_like(f0) | |
| vuv_vector[f0 > 0.0] = 1.0 | |
| vuv_vector[f0 <= 0.0] = 0.0 | |
| # 去掉0频率, 并线性插值 | |
| nzindex = torch.nonzero(f0).squeeze() | |
| f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy() | |
| time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy() | |
| time_frame = np.arange(pad_to) * self.hop_length / sampling_rate | |
| vuv_vector = F.interpolate(vuv_vector[None,None,:],size=pad_to)[0][0] | |
| if f0.shape[0] <= 0: | |
| return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(),vuv_vector.cpu().numpy() | |
| if f0.shape[0] == 1: | |
| return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0]).cpu().numpy() ,vuv_vector.cpu().numpy() | |
| # 大概可以用 torch 重写? | |
| f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) | |
| #vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0)) | |
| return f0,vuv_vector.cpu().numpy() | |
| def compute_f0(self,wav,p_len=None): | |
| x = torch.FloatTensor(wav).to(self.dtype).to(self.device) | |
| if p_len is None: | |
| p_len = x.shape[0]//self.hop_length | |
| else: | |
| assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error" | |
| f0 = self.rmvpe.infer_from_audio(x,self.sampling_rate,self.threshold) | |
| if torch.all(f0 == 0): | |
| rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) | |
| return rtn,rtn | |
| return self.post_process(x,self.sampling_rate,f0,p_len)[0] | |
| def compute_f0_uv(self,wav,p_len=None): | |
| x = torch.FloatTensor(wav).to(self.dtype).to(self.device) | |
| if p_len is None: | |
| p_len = x.shape[0]//self.hop_length | |
| else: | |
| assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error" | |
| f0 = self.rmvpe.infer_from_audio(x,self.sampling_rate,self.threshold) | |
| if torch.all(f0 == 0): | |
| rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) | |
| return rtn,rtn | |
| return self.post_process(x,self.sampling_rate,f0,p_len) |