Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn.utils import weight_norm | |
| from torchaudio.transforms import Resample | |
| from .nvSTFT import STFT | |
| from .pcmer import PCmer | |
| def l2_regularization(model, l2_alpha): | |
| l2_loss = [] | |
| for module in model.modules(): | |
| if type(module) is nn.Conv2d: | |
| l2_loss.append((module.weight ** 2).sum() / 2.0) | |
| return l2_alpha * sum(l2_loss) | |
| class FCPE(nn.Module): | |
| def __init__( | |
| self, | |
| input_channel=128, | |
| out_dims=360, | |
| n_layers=12, | |
| n_chans=512, | |
| use_siren=False, | |
| use_full=False, | |
| loss_mse_scale=10, | |
| loss_l2_regularization=False, | |
| loss_l2_regularization_scale=1, | |
| loss_grad1_mse=False, | |
| loss_grad1_mse_scale=1, | |
| f0_max=1975.5, | |
| f0_min=32.70, | |
| confidence=False, | |
| threshold=0.05, | |
| use_input_conv=True | |
| ): | |
| super().__init__() | |
| if use_siren is True: | |
| raise ValueError("Siren is not supported yet.") | |
| if use_full is True: | |
| raise ValueError("Full model is not supported yet.") | |
| self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10 | |
| self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False | |
| self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale | |
| is not None) else 1 | |
| self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False | |
| self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1 | |
| self.f0_max = f0_max if (f0_max is not None) else 1975.5 | |
| self.f0_min = f0_min if (f0_min is not None) else 32.70 | |
| self.confidence = confidence if (confidence is not None) else False | |
| self.threshold = threshold if (threshold is not None) else 0.05 | |
| self.use_input_conv = use_input_conv if (use_input_conv is not None) else True | |
| self.cent_table_b = torch.Tensor( | |
| np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], | |
| out_dims)) | |
| self.register_buffer("cent_table", self.cent_table_b) | |
| # conv in stack | |
| _leaky = nn.LeakyReLU() | |
| self.stack = nn.Sequential( | |
| nn.Conv1d(input_channel, n_chans, 3, 1, 1), | |
| nn.GroupNorm(4, n_chans), | |
| _leaky, | |
| nn.Conv1d(n_chans, n_chans, 3, 1, 1)) | |
| # transformer | |
| self.decoder = PCmer( | |
| num_layers=n_layers, | |
| num_heads=8, | |
| dim_model=n_chans, | |
| dim_keys=n_chans, | |
| dim_values=n_chans, | |
| residual_dropout=0.1, | |
| attention_dropout=0.1) | |
| self.norm = nn.LayerNorm(n_chans) | |
| # out | |
| self.n_out = out_dims | |
| self.dense_out = weight_norm( | |
| nn.Linear(n_chans, self.n_out)) | |
| def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder = "local_argmax"): | |
| """ | |
| input: | |
| B x n_frames x n_unit | |
| return: | |
| dict of B x n_frames x feat | |
| """ | |
| if cdecoder == "argmax": | |
| self.cdecoder = self.cents_decoder | |
| elif cdecoder == "local_argmax": | |
| self.cdecoder = self.cents_local_decoder | |
| if self.use_input_conv: | |
| x = self.stack(mel.transpose(1, 2)).transpose(1, 2) | |
| else: | |
| x = mel | |
| x = self.decoder(x) | |
| x = self.norm(x) | |
| x = self.dense_out(x) # [B,N,D] | |
| x = torch.sigmoid(x) | |
| if not infer: | |
| gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1] | |
| gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim] | |
| loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0) # bce loss | |
| # l2 regularization | |
| if self.loss_l2_regularization: | |
| loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale) | |
| x = loss_all | |
| if infer: | |
| x = self.cdecoder(x) | |
| x = self.cent_to_f0(x) | |
| if not return_hz_f0: | |
| x = (1 + x / 700).log() | |
| return x | |
| def cents_decoder(self, y, mask=True): | |
| B, N, _ = y.size() | |
| ci = self.cent_table[None, None, :].expand(B, N, -1) | |
| rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True) # cents: [B,N,1] | |
| if mask: | |
| confident = torch.max(y, dim=-1, keepdim=True)[0] | |
| confident_mask = torch.ones_like(confident) | |
| confident_mask[confident <= self.threshold] = float("-INF") | |
| rtn = rtn * confident_mask | |
| if self.confidence: | |
| return rtn, confident | |
| else: | |
| return rtn | |
| def cents_local_decoder(self, y, mask=True): | |
| B, N, _ = y.size() | |
| ci = self.cent_table[None, None, :].expand(B, N, -1) | |
| confident, max_index = torch.max(y, dim=-1, keepdim=True) | |
| local_argmax_index = torch.arange(0,9).to(max_index.device) + (max_index - 4) | |
| local_argmax_index[local_argmax_index<0] = 0 | |
| local_argmax_index[local_argmax_index>=self.n_out] = self.n_out - 1 | |
| ci_l = torch.gather(ci,-1,local_argmax_index) | |
| y_l = torch.gather(y,-1,local_argmax_index) | |
| rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) # cents: [B,N,1] | |
| if mask: | |
| confident_mask = torch.ones_like(confident) | |
| confident_mask[confident <= self.threshold] = float("-INF") | |
| rtn = rtn * confident_mask | |
| if self.confidence: | |
| return rtn, confident | |
| else: | |
| return rtn | |
| def cent_to_f0(self, cent): | |
| return 10. * 2 ** (cent / 1200.) | |
| def f0_to_cent(self, f0): | |
| return 1200. * torch.log2(f0 / 10.) | |
| def gaussian_blurred_cent(self, cents): # cents: [B,N,1] | |
| mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.))) | |
| B, N, _ = cents.size() | |
| ci = self.cent_table[None, None, :].expand(B, N, -1) | |
| return torch.exp(-torch.square(ci - cents) / 1250) * mask.float() | |
| class FCPEInfer: | |
| def __init__(self, model_path, device=None, dtype=torch.float32): | |
| if device is None: | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| self.device = device | |
| ckpt = torch.load(model_path, map_location=torch.device(self.device)) | |
| self.args = DotDict(ckpt["config"]) | |
| self.dtype = dtype | |
| model = FCPE( | |
| input_channel=self.args.model.input_channel, | |
| out_dims=self.args.model.out_dims, | |
| n_layers=self.args.model.n_layers, | |
| n_chans=self.args.model.n_chans, | |
| use_siren=self.args.model.use_siren, | |
| use_full=self.args.model.use_full, | |
| loss_mse_scale=self.args.loss.loss_mse_scale, | |
| loss_l2_regularization=self.args.loss.loss_l2_regularization, | |
| loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale, | |
| loss_grad1_mse=self.args.loss.loss_grad1_mse, | |
| loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale, | |
| f0_max=self.args.model.f0_max, | |
| f0_min=self.args.model.f0_min, | |
| confidence=self.args.model.confidence, | |
| ) | |
| model.to(self.device).to(self.dtype) | |
| model.load_state_dict(ckpt['model']) | |
| model.eval() | |
| self.model = model | |
| self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device) | |
| def __call__(self, audio, sr, threshold=0.05): | |
| self.model.threshold = threshold | |
| audio = audio[None,:] | |
| mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype) | |
| f0 = self.model(mel=mel, infer=True, return_hz_f0=True) | |
| return f0 | |
| class Wav2Mel: | |
| def __init__(self, args, device=None, dtype=torch.float32): | |
| # self.args = args | |
| self.sampling_rate = args.mel.sampling_rate | |
| self.hop_size = args.mel.hop_size | |
| if device is None: | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| self.device = device | |
| self.dtype = dtype | |
| self.stft = STFT( | |
| args.mel.sampling_rate, | |
| args.mel.num_mels, | |
| args.mel.n_fft, | |
| args.mel.win_size, | |
| args.mel.hop_size, | |
| args.mel.fmin, | |
| args.mel.fmax | |
| ) | |
| self.resample_kernel = {} | |
| def extract_nvstft(self, audio, keyshift=0, train=False): | |
| mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2) # B, n_frames, bins | |
| return mel | |
| def extract_mel(self, audio, sample_rate, keyshift=0, train=False): | |
| audio = audio.to(self.dtype).to(self.device) | |
| # resample | |
| if sample_rate == self.sampling_rate: | |
| audio_res = audio | |
| else: | |
| key_str = str(sample_rate) | |
| if key_str not in self.resample_kernel: | |
| self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128) | |
| self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device) | |
| audio_res = self.resample_kernel[key_str](audio) | |
| # extract | |
| mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) # B, n_frames, bins | |
| n_frames = int(audio.shape[1] // self.hop_size) + 1 | |
| if n_frames > int(mel.shape[1]): | |
| mel = torch.cat((mel, mel[:, -1:, :]), 1) | |
| if n_frames < int(mel.shape[1]): | |
| mel = mel[:, :n_frames, :] | |
| return mel | |
| def __call__(self, audio, sample_rate, keyshift=0, train=False): | |
| return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train) | |
| class DotDict(dict): | |
| def __getattr__(*args): | |
| val = dict.get(*args) | |
| return DotDict(val) if type(val) is dict else val | |
| __setattr__ = dict.__setitem__ | |
| __delattr__ = dict.__delitem__ | |