Spaces:
Runtime error
Runtime error
| import math | |
| from functools import partial | |
| import torch | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| from local_attention import LocalAttention | |
| from torch import nn | |
| #import fast_transformers.causal_product.causal_product_cuda | |
| def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None): | |
| b, h, *_ = data.shape | |
| # (batch size, head, length, model_dim) | |
| # normalize model dim | |
| data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1. | |
| # what is ration?, projection_matrix.shape[0] --> 266 | |
| ratio = (projection_matrix.shape[0] ** -0.5) | |
| projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h) | |
| projection = projection.type_as(data) | |
| #data_dash = w^T x | |
| data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection) | |
| # diag_data = D**2 | |
| diag_data = data ** 2 | |
| diag_data = torch.sum(diag_data, dim=-1) | |
| diag_data = (diag_data / 2.0) * (data_normalizer ** 2) | |
| diag_data = diag_data.unsqueeze(dim=-1) | |
| #print () | |
| if is_query: | |
| data_dash = ratio * ( | |
| torch.exp(data_dash - diag_data - | |
| torch.max(data_dash, dim=-1, keepdim=True).values) + eps) | |
| else: | |
| data_dash = ratio * ( | |
| torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps) | |
| return data_dash.type_as(data) | |
| def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None): | |
| unstructured_block = torch.randn((cols, cols), device = device) | |
| q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced') | |
| q, r = map(lambda t: t.to(device), (q, r)) | |
| # proposed by @Parskatt | |
| # to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf | |
| if qr_uniform_q: | |
| d = torch.diag(r, 0) | |
| q *= d.sign() | |
| return q.t() | |
| def exists(val): | |
| return val is not None | |
| def empty(tensor): | |
| return tensor.numel() == 0 | |
| def default(val, d): | |
| return val if exists(val) else d | |
| def cast_tuple(val): | |
| return (val,) if not isinstance(val, tuple) else val | |
| class PCmer(nn.Module): | |
| """The encoder that is used in the Transformer model.""" | |
| def __init__(self, | |
| num_layers, | |
| num_heads, | |
| dim_model, | |
| dim_keys, | |
| dim_values, | |
| residual_dropout, | |
| attention_dropout): | |
| super().__init__() | |
| self.num_layers = num_layers | |
| self.num_heads = num_heads | |
| self.dim_model = dim_model | |
| self.dim_values = dim_values | |
| self.dim_keys = dim_keys | |
| self.residual_dropout = residual_dropout | |
| self.attention_dropout = attention_dropout | |
| self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)]) | |
| # METHODS ######################################################################################################## | |
| def forward(self, phone, mask=None): | |
| # apply all layers to the input | |
| for (i, layer) in enumerate(self._layers): | |
| phone = layer(phone, mask) | |
| # provide the final sequence | |
| return phone | |
| # ==================================================================================================================== # | |
| # CLASS _ E N C O D E R L A Y E R # | |
| # ==================================================================================================================== # | |
| class _EncoderLayer(nn.Module): | |
| """One layer of the encoder. | |
| Attributes: | |
| attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence. | |
| feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism. | |
| """ | |
| def __init__(self, parent: PCmer): | |
| """Creates a new instance of ``_EncoderLayer``. | |
| Args: | |
| parent (Encoder): The encoder that the layers is created for. | |
| """ | |
| super().__init__() | |
| self.conformer = ConformerConvModule(parent.dim_model) | |
| self.norm = nn.LayerNorm(parent.dim_model) | |
| self.dropout = nn.Dropout(parent.residual_dropout) | |
| # selfatt -> fastatt: performer! | |
| self.attn = SelfAttention(dim = parent.dim_model, | |
| heads = parent.num_heads, | |
| causal = False) | |
| # METHODS ######################################################################################################## | |
| def forward(self, phone, mask=None): | |
| # compute attention sub-layer | |
| phone = phone + (self.attn(self.norm(phone), mask=mask)) | |
| phone = phone + (self.conformer(phone)) | |
| return phone | |
| def calc_same_padding(kernel_size): | |
| pad = kernel_size // 2 | |
| return (pad, pad - (kernel_size + 1) % 2) | |
| # helper classes | |
| class Swish(nn.Module): | |
| def forward(self, x): | |
| return x * x.sigmoid() | |
| class Transpose(nn.Module): | |
| def __init__(self, dims): | |
| super().__init__() | |
| assert len(dims) == 2, 'dims must be a tuple of two dimensions' | |
| self.dims = dims | |
| def forward(self, x): | |
| return x.transpose(*self.dims) | |
| class GLU(nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.dim = dim | |
| def forward(self, x): | |
| out, gate = x.chunk(2, dim=self.dim) | |
| return out * gate.sigmoid() | |
| class DepthWiseConv1d(nn.Module): | |
| def __init__(self, chan_in, chan_out, kernel_size, padding): | |
| super().__init__() | |
| self.padding = padding | |
| self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in) | |
| def forward(self, x): | |
| x = F.pad(x, self.padding) | |
| return self.conv(x) | |
| class ConformerConvModule(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| causal = False, | |
| expansion_factor = 2, | |
| kernel_size = 31, | |
| dropout = 0.): | |
| super().__init__() | |
| inner_dim = dim * expansion_factor | |
| padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0) | |
| self.net = nn.Sequential( | |
| nn.LayerNorm(dim), | |
| Transpose((1, 2)), | |
| nn.Conv1d(dim, inner_dim * 2, 1), | |
| GLU(dim=1), | |
| DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding), | |
| #nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(), | |
| Swish(), | |
| nn.Conv1d(inner_dim, dim, 1), | |
| Transpose((1, 2)), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| def linear_attention(q, k, v): | |
| if v is None: | |
| #print (k.size(), q.size()) | |
| out = torch.einsum('...ed,...nd->...ne', k, q) | |
| return out | |
| else: | |
| k_cumsum = k.sum(dim = -2) | |
| #k_cumsum = k.sum(dim = -2) | |
| D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8) | |
| context = torch.einsum('...nd,...ne->...de', k, v) | |
| #print ("TRUEEE: ", context.size(), q.size(), D_inv.size()) | |
| out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv) | |
| return out | |
| def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None): | |
| nb_full_blocks = int(nb_rows / nb_columns) | |
| #print (nb_full_blocks) | |
| block_list = [] | |
| for _ in range(nb_full_blocks): | |
| q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device) | |
| block_list.append(q) | |
| # block_list[n] is a orthogonal matrix ... (model_dim * model_dim) | |
| #print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1))) | |
| #print (nb_rows, nb_full_blocks, nb_columns) | |
| remaining_rows = nb_rows - nb_full_blocks * nb_columns | |
| #print (remaining_rows) | |
| if remaining_rows > 0: | |
| q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device) | |
| #print (q[:remaining_rows].size()) | |
| block_list.append(q[:remaining_rows]) | |
| final_matrix = torch.cat(block_list) | |
| if scaling == 0: | |
| multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1) | |
| elif scaling == 1: | |
| multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device) | |
| else: | |
| raise ValueError(f'Invalid scaling {scaling}') | |
| return torch.diag(multiplier) @ final_matrix | |
| class FastAttention(nn.Module): | |
| def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False): | |
| super().__init__() | |
| nb_features = default(nb_features, int(dim_heads * math.log(dim_heads))) | |
| self.dim_heads = dim_heads | |
| self.nb_features = nb_features | |
| self.ortho_scaling = ortho_scaling | |
| self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q) | |
| projection_matrix = self.create_projection() | |
| self.register_buffer('projection_matrix', projection_matrix) | |
| self.generalized_attention = generalized_attention | |
| self.kernel_fn = kernel_fn | |
| # if this is turned on, no projection will be used | |
| # queries and keys will be softmax-ed as in the original efficient attention paper | |
| self.no_projection = no_projection | |
| self.causal = causal | |
| def redraw_projection_matrix(self): | |
| projections = self.create_projection() | |
| self.projection_matrix.copy_(projections) | |
| del projections | |
| def forward(self, q, k, v): | |
| device = q.device | |
| if self.no_projection: | |
| q = q.softmax(dim = -1) | |
| k = torch.exp(k) if self.causal else k.softmax(dim = -2) | |
| else: | |
| create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device) | |
| q = create_kernel(q, is_query = True) | |
| k = create_kernel(k, is_query = False) | |
| attn_fn = linear_attention if not self.causal else self.causal_linear_fn | |
| if v is None: | |
| out = attn_fn(q, k, None) | |
| return out | |
| else: | |
| out = attn_fn(q, k, v) | |
| return out | |
| class SelfAttention(nn.Module): | |
| def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False): | |
| super().__init__() | |
| assert dim % heads == 0, 'dimension must be divisible by number of heads' | |
| dim_head = default(dim_head, dim // heads) | |
| inner_dim = dim_head * heads | |
| self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection) | |
| self.heads = heads | |
| self.global_heads = heads - local_heads | |
| self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None | |
| #print (heads, nb_features, dim_head) | |
| #name_embedding = torch.zeros(110, heads, dim_head, dim_head) | |
| #self.name_embedding = nn.Parameter(name_embedding, requires_grad=True) | |
| self.to_q = nn.Linear(dim, inner_dim) | |
| self.to_k = nn.Linear(dim, inner_dim) | |
| self.to_v = nn.Linear(dim, inner_dim) | |
| self.to_out = nn.Linear(inner_dim, dim) | |
| self.dropout = nn.Dropout(dropout) | |
| def redraw_projection_matrix(self): | |
| self.fast_attention.redraw_projection_matrix() | |
| #torch.nn.init.zeros_(self.name_embedding) | |
| #print (torch.sum(self.name_embedding)) | |
| def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs): | |
| _, _, _, h, gh = *x.shape, self.heads, self.global_heads | |
| cross_attend = exists(context) | |
| context = default(context, x) | |
| context_mask = default(context_mask, mask) if not cross_attend else context_mask | |
| #print (torch.sum(self.name_embedding)) | |
| q, k, v = self.to_q(x), self.to_k(context), self.to_v(context) | |
| q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) | |
| (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v)) | |
| attn_outs = [] | |
| #print (name) | |
| #print (self.name_embedding[name].size()) | |
| if not empty(q): | |
| if exists(context_mask): | |
| global_mask = context_mask[:, None, :, None] | |
| v.masked_fill_(~global_mask, 0.) | |
| if cross_attend: | |
| pass | |
| #print (torch.sum(self.name_embedding)) | |
| #out = self.fast_attention(q,self.name_embedding[name],None) | |
| #print (torch.sum(self.name_embedding[...,-1:])) | |
| else: | |
| out = self.fast_attention(q, k, v) | |
| attn_outs.append(out) | |
| if not empty(lq): | |
| assert not cross_attend, 'local attention is not compatible with cross attention' | |
| out = self.local_attn(lq, lk, lv, input_mask = mask) | |
| attn_outs.append(out) | |
| out = torch.cat(attn_outs, dim = 1) | |
| out = rearrange(out, 'b h n d -> b n (h d)') | |
| out = self.to_out(out) | |
| return self.dropout(out) |