Spaces:
Runtime error
Runtime error
| import torch | |
| from torchaudio.transforms import Resample | |
| from vdecoder.nsf_hifigan.models import load_config, load_model | |
| from vdecoder.nsf_hifigan.nvSTFT import STFT | |
| class Vocoder: | |
| def __init__(self, vocoder_type, vocoder_ckpt, device = None): | |
| if device is None: | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| self.device = device | |
| if vocoder_type == 'nsf-hifigan': | |
| self.vocoder = NsfHifiGAN(vocoder_ckpt, device = device) | |
| elif vocoder_type == 'nsf-hifigan-log10': | |
| self.vocoder = NsfHifiGANLog10(vocoder_ckpt, device = device) | |
| else: | |
| raise ValueError(f" [x] Unknown vocoder: {vocoder_type}") | |
| self.resample_kernel = {} | |
| self.vocoder_sample_rate = self.vocoder.sample_rate() | |
| self.vocoder_hop_size = self.vocoder.hop_size() | |
| self.dimension = self.vocoder.dimension() | |
| def extract(self, audio, sample_rate, keyshift=0): | |
| # resample | |
| if sample_rate == self.vocoder_sample_rate: | |
| audio_res = audio | |
| else: | |
| key_str = str(sample_rate) | |
| if key_str not in self.resample_kernel: | |
| self.resample_kernel[key_str] = Resample(sample_rate, self.vocoder_sample_rate, lowpass_filter_width = 128).to(self.device) | |
| audio_res = self.resample_kernel[key_str](audio) | |
| # extract | |
| mel = self.vocoder.extract(audio_res, keyshift=keyshift) # B, n_frames, bins | |
| return mel | |
| def infer(self, mel, f0): | |
| f0 = f0[:,:mel.size(1),0] # B, n_frames | |
| audio = self.vocoder(mel, f0) | |
| return audio | |
| class NsfHifiGAN(torch.nn.Module): | |
| def __init__(self, model_path, device=None): | |
| super().__init__() | |
| if device is None: | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| self.device = device | |
| self.model_path = model_path | |
| self.model = None | |
| self.h = load_config(model_path) | |
| self.stft = STFT( | |
| self.h.sampling_rate, | |
| self.h.num_mels, | |
| self.h.n_fft, | |
| self.h.win_size, | |
| self.h.hop_size, | |
| self.h.fmin, | |
| self.h.fmax) | |
| def sample_rate(self): | |
| return self.h.sampling_rate | |
| def hop_size(self): | |
| return self.h.hop_size | |
| def dimension(self): | |
| return self.h.num_mels | |
| def extract(self, audio, keyshift=0): | |
| mel = self.stft.get_mel(audio, keyshift=keyshift).transpose(1, 2) # B, n_frames, bins | |
| return mel | |
| def forward(self, mel, f0): | |
| if self.model is None: | |
| print('| Load HifiGAN: ', self.model_path) | |
| self.model, self.h = load_model(self.model_path, device=self.device) | |
| with torch.no_grad(): | |
| c = mel.transpose(1, 2) | |
| audio = self.model(c, f0) | |
| return audio | |
| class NsfHifiGANLog10(NsfHifiGAN): | |
| def forward(self, mel, f0): | |
| if self.model is None: | |
| print('| Load HifiGAN: ', self.model_path) | |
| self.model, self.h = load_model(self.model_path, device=self.device) | |
| with torch.no_grad(): | |
| c = 0.434294 * mel.transpose(1, 2) | |
| audio = self.model(c, f0) | |
| return audio |