Spaces:
Runtime error
Runtime error
| import torch | |
| from vencoder.encoder import SpeechEncoder | |
| from vencoder.wavlm.WavLM import WavLM, WavLMConfig | |
| class WavLMBasePlus(SpeechEncoder): | |
| def __init__(self, vec_path="pretrain/WavLM-Base+.pt", device=None): | |
| super().__init__() | |
| print("load model(s) from {}".format(vec_path)) | |
| checkpoint = torch.load(vec_path) | |
| self.cfg = WavLMConfig(checkpoint['cfg']) | |
| if device is None: | |
| self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| else: | |
| self.dev = torch.device(device) | |
| self.hidden_dim = self.cfg.encoder_embed_dim | |
| self.model = WavLM(self.cfg) | |
| self.model.load_state_dict(checkpoint['model']) | |
| self.model.to(self.dev).eval() | |
| def encoder(self, wav): | |
| feats = wav | |
| if feats.dim() == 2: # double channels | |
| feats = feats.mean(-1) | |
| assert feats.dim() == 1, feats.dim() | |
| if self.cfg.normalize: | |
| feats = torch.nn.functional.layer_norm(feats, feats.shape) | |
| with torch.no_grad(): | |
| with torch.inference_mode(): | |
| units = self.model.extract_features(feats[None, :])[0] | |
| return units.transpose(1, 2) | |