Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import subprocess
|
| 3 |
+
import signal
|
| 4 |
+
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import tempfile
|
| 7 |
+
|
| 8 |
+
from huggingface_hub import HfApi, ModelCard, whoami
|
| 9 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from textwrap import dedent
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def process_model(ft_model_id: str, base_model_id: str, rank: str, private_repo, oauth_token: gr.OAuthToken | None):
|
| 15 |
+
if oauth_token is None or oauth_token.token is None:
|
| 16 |
+
raise gr.Error("You must be logged in")
|
| 17 |
+
model_name = ft_model_id.split('/')[-1]
|
| 18 |
+
|
| 19 |
+
if not os.path.exists("outputs"):
|
| 20 |
+
os.makedirs("outputs")
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
api = HfApi(token=oauth_token.token)
|
| 24 |
+
|
| 25 |
+
with tempfile.TemporaryDirectory(dir="outputs") as outputdir:
|
| 26 |
+
result = subprocess.run([
|
| 27 |
+
"mergekit-extract-lora",
|
| 28 |
+
ft_model_id,
|
| 29 |
+
base_model_id,
|
| 30 |
+
outputdir,
|
| 31 |
+
f"--rank={rank}",
|
| 32 |
+
], shell=False, capture_output=True)
|
| 33 |
+
print(result)
|
| 34 |
+
if result.returncode != 0:
|
| 35 |
+
raise Exception(f"Error converting to LoRA PEFT {q_method}: {result.stderr}")
|
| 36 |
+
print("Model converted to LoRA PEFT successfully!")
|
| 37 |
+
print(f"Converted model path: {outputdir}")
|
| 38 |
+
|
| 39 |
+
# Check output dir
|
| 40 |
+
if not os.listdir(outputdir):
|
| 41 |
+
raise Exception("Output directory is empty!")
|
| 42 |
+
|
| 43 |
+
# Create repo
|
| 44 |
+
username = whoami(oauth_token.token)["name"]
|
| 45 |
+
new_repo_url = api.create_repo(repo_id=f"{username}/LoRA-{model_name}", exist_ok=True, private=private_repo)
|
| 46 |
+
new_repo_id = new_repo_url.repo_id
|
| 47 |
+
print("Repo created successfully!", new_repo_url)
|
| 48 |
+
|
| 49 |
+
# Upload files
|
| 50 |
+
api.upload_file(
|
| 51 |
+
folder_path=outputdir,
|
| 52 |
+
path_in_repo="",
|
| 53 |
+
repo_id=new_repo_id,
|
| 54 |
+
)
|
| 55 |
+
print("Uploaded", outputdir)
|
| 56 |
+
|
| 57 |
+
return (
|
| 58 |
+
f'<h1>✅ DONE</h1><br/><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>'
|
| 59 |
+
)
|
| 60 |
+
except Exception as e:
|
| 61 |
+
return (f"<h1>❌ ERROR</h1><br/><br/>{e}")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
css="""/* Custom CSS to allow scrolling */
|
| 65 |
+
.gradio-container {overflow-y: auto;}
|
| 66 |
+
"""
|
| 67 |
+
# Create Gradio interface
|
| 68 |
+
with gr.Blocks(css=css) as demo:
|
| 69 |
+
gr.Markdown("You must be logged in.")
|
| 70 |
+
gr.LoginButton(min_width=250)
|
| 71 |
+
|
| 72 |
+
ft_model_id = HuggingfaceHubSearch(
|
| 73 |
+
label="Fine tuned model repository",
|
| 74 |
+
placeholder="Search for repository on Huggingface",
|
| 75 |
+
search_type="model",
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
base_model_id = HuggingfaceHubSearch(
|
| 79 |
+
label="Base tuned model repository",
|
| 80 |
+
placeholder="Search for repository on Huggingface",
|
| 81 |
+
search_type="model",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
rank = gr.Dropdown(
|
| 85 |
+
["16", "32", "64", "128"],
|
| 86 |
+
label="LoRA rank",
|
| 87 |
+
info="Higher the rank, better the result, but heavier the adapter",
|
| 88 |
+
value="32",
|
| 89 |
+
filterable=False,
|
| 90 |
+
visible=True
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
private_repo = gr.Checkbox(
|
| 94 |
+
value=False,
|
| 95 |
+
label="Private Repo",
|
| 96 |
+
info="Create a private repo under your username."
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
iface = gr.Interface(
|
| 100 |
+
fn=process_model,
|
| 101 |
+
inputs=[
|
| 102 |
+
ft_model_id,
|
| 103 |
+
base_model_id,
|
| 104 |
+
rank,
|
| 105 |
+
private_repo,
|
| 106 |
+
],
|
| 107 |
+
outputs=[
|
| 108 |
+
gr.Markdown(label="output"),
|
| 109 |
+
],
|
| 110 |
+
title="Convert fine tuned model into LoRA with mergekit-extract-lora",
|
| 111 |
+
description="The space takes a fine tuned model, a base model, then make a PEFT-compatible LoRA adapter based on the difference between 2 models.",
|
| 112 |
+
api_name=False
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Launch the interface
|
| 116 |
+
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|