Update app.py
Browse files
app.py
CHANGED
|
@@ -4,75 +4,130 @@
|
|
| 4 |
@author: Nikhil Kunjoor
|
| 5 |
"""
|
| 6 |
import gradio as gr
|
| 7 |
-
from transformers import pipeline
|
| 8 |
-
from PIL import Image, ImageFilter
|
| 9 |
import numpy as np
|
|
|
|
| 10 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def apply_gaussian_blur(image, mask, sigma):
|
| 17 |
-
blurred = image.filter(ImageFilter.GaussianBlur(sigma))
|
| 18 |
-
return Image.composite(image, blurred, mask)
|
| 19 |
-
|
| 20 |
-
def apply_lens_blur(image, depth_map,
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
if blur_type == "Gaussian Blur":
|
| 55 |
-
|
| 56 |
-
else:
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
return
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
gr.
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
@author: Nikhil Kunjoor
|
| 5 |
"""
|
| 6 |
import gradio as gr
|
|
|
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
+
from PIL import Image, ImageFilter
|
| 9 |
import torch
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from transformers import AutoModelForImageSegmentation, AutoImageProcessor, AutoModelForDepthEstimation
|
| 12 |
+
|
| 13 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 14 |
+
torch.set_float32_matmul_precision('high')
|
| 15 |
+
|
| 16 |
+
rmbg_model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-2.0", trust_remote_code=True).to(device).eval()
|
| 17 |
+
depth_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
| 18 |
+
depth_model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf").to(device)
|
| 19 |
+
|
| 20 |
+
def run_rmbg(image, threshold=0.5):
|
| 21 |
+
image_size = (1024, 1024)
|
| 22 |
+
transform_image = transforms.Compose([
|
| 23 |
+
transforms.Resize(image_size),
|
| 24 |
+
transforms.ToTensor(),
|
| 25 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 26 |
+
])
|
| 27 |
+
input_images = transform_image(image).unsqueeze(0).to(device)
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
preds = rmbg_model(input_images)
|
| 30 |
+
mask_logits = preds[-1]
|
| 31 |
+
mask_prob = mask_logits.sigmoid().cpu()[0].squeeze()
|
| 32 |
+
pred_pil = transforms.ToPILImage()(mask_prob)
|
| 33 |
+
mask_pil = pred_pil.resize(image.size, resample=Image.BILINEAR)
|
| 34 |
+
mask_np = np.array(mask_pil, dtype=np.uint8) / 255.0
|
| 35 |
+
binary_mask = (mask_np > threshold).astype(np.uint8)
|
| 36 |
+
return binary_mask
|
| 37 |
|
| 38 |
+
def run_depth_estimation(image, target_size=(512, 512)):
|
| 39 |
+
image_resized = image.resize(target_size, resample=Image.BILINEAR)
|
| 40 |
+
inputs = depth_processor(images=image_resized, return_tensors="pt").to(device)
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
outputs = depth_model(**inputs)
|
| 43 |
+
predicted_depth = outputs.predicted_depth
|
| 44 |
+
prediction = torch.nn.functional.interpolate(
|
| 45 |
+
predicted_depth.unsqueeze(1),
|
| 46 |
+
size=image.size[::-1],
|
| 47 |
+
mode="bicubic",
|
| 48 |
+
align_corners=False,
|
| 49 |
+
)
|
| 50 |
+
depth_map = prediction.squeeze().cpu().numpy()
|
| 51 |
+
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
| 52 |
+
return 1 - depth_map
|
| 53 |
|
| 54 |
def apply_gaussian_blur(image, mask, sigma):
|
| 55 |
+
blurred = image.filter(ImageFilter.GaussianBlur(radius=sigma))
|
| 56 |
+
return Image.composite(image, blurred, Image.fromarray((mask * 255).astype(np.uint8)))
|
| 57 |
+
|
| 58 |
+
def apply_lens_blur(image, depth_map, max_radius, foreground_percentile):
|
| 59 |
+
foreground_threshold = np.percentile(depth_map.flatten(), foreground_percentile)
|
| 60 |
+
output = np.array(image)
|
| 61 |
+
for radius in np.linspace(0, max_radius, 10):
|
| 62 |
+
mask = (depth_map > foreground_threshold + radius / max_radius * (depth_map.max() - foreground_threshold))
|
| 63 |
+
blurred = image.filter(ImageFilter.GaussianBlur(radius=radius))
|
| 64 |
+
output[mask] = np.array(blurred)[mask]
|
| 65 |
+
return Image.fromarray(output)
|
| 66 |
+
|
| 67 |
+
def process_image(image, blur_type, sigma, max_radius, foreground_percentile, mask_threshold):
|
| 68 |
+
if image is None:
|
| 69 |
+
return None, "Please upload an image."
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
image = Image.fromarray(image).convert("RGB")
|
| 73 |
+
except Exception as e:
|
| 74 |
+
return None, f"Error processing image: {str(e)}"
|
| 75 |
+
|
| 76 |
+
max_size = (1024, 1024)
|
| 77 |
+
if image.size[0] > max_size[0] or image.size[1] > max_size[1]:
|
| 78 |
+
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
if blur_type == "Gaussian Blur":
|
| 82 |
+
mask = run_rmbg(image, threshold=mask_threshold)
|
| 83 |
+
output_image = apply_gaussian_blur(image, mask, sigma)
|
| 84 |
+
else: # Lens Blur
|
| 85 |
+
depth_map = run_depth_estimation(image)
|
| 86 |
+
output_image = apply_lens_blur(image, depth_map, max_radius, foreground_percentile)
|
| 87 |
+
except Exception as e:
|
| 88 |
+
return None, f"Error applying blur: {str(e)}"
|
| 89 |
+
|
| 90 |
+
# Generate debug info
|
| 91 |
+
debug_info = f"Blur Type: {blur_type}\n"
|
| 92 |
if blur_type == "Gaussian Blur":
|
| 93 |
+
debug_info += f"Sigma: {sigma}\nMask Threshold: {mask_threshold}"
|
| 94 |
+
else:
|
| 95 |
+
debug_info += f"Max Radius: {max_radius}\nForeground Percentile: {foreground_percentile}"
|
| 96 |
+
|
| 97 |
+
return output_image, debug_info
|
| 98 |
+
|
| 99 |
+
with gr.Blocks() as demo:
|
| 100 |
+
gr.Markdown("# Image Blur Effects with Gaussian and Lens Blur")
|
| 101 |
+
with gr.Row():
|
| 102 |
+
image_input = gr.Image(label="Upload Image", type="numpy")
|
| 103 |
+
with gr.Column():
|
| 104 |
+
blur_type = gr.Radio(choices=["Gaussian Blur", "Lens Blur"], label="Blur Type", value="Gaussian Blur")
|
| 105 |
+
sigma = gr.Slider(minimum=0.1, maximum=50, step=0.1, value=15, label="Gaussian Blur Sigma")
|
| 106 |
+
max_radius = gr.Slider(minimum=1, maximum=100, step=1, value=15, label="Max Lens Blur Radius")
|
| 107 |
+
foreground_percentile = gr.Slider(minimum=1, maximum=99, step=1, value=30, label="Foreground Percentile")
|
| 108 |
+
mask_threshold = gr.Slider(minimum=0.1, maximum=0.9, step=0.1, value=0.5, label="Mask Threshold")
|
| 109 |
+
|
| 110 |
+
process_button = gr.Button("Apply Blur")
|
| 111 |
+
with gr.Row():
|
| 112 |
+
output_image = gr.Image(label="Output Image")
|
| 113 |
+
debug_info = gr.Textbox(label="Debug Info", lines=4)
|
| 114 |
+
|
| 115 |
+
def update_visibility(blur_type):
|
| 116 |
+
if blur_type == "Gaussian Blur":
|
| 117 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 118 |
+
else: # Lens Blur
|
| 119 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
| 120 |
+
|
| 121 |
+
blur_type.change(
|
| 122 |
+
fn=update_visibility,
|
| 123 |
+
inputs=blur_type,
|
| 124 |
+
outputs=[sigma, max_radius, foreground_percentile, mask_threshold]
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
process_button.click(
|
| 128 |
+
fn=process_image,
|
| 129 |
+
inputs=[image_input, blur_type, sigma, max_radius, foreground_percentile, mask_threshold],
|
| 130 |
+
outputs=[output_image, debug_info]
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
demo.launch()
|