Update app.py
Browse filesAdded Code to the application
app.py
CHANGED
|
@@ -1,21 +1,59 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
segmented_output = ... # Segmented output with blurred background
|
| 8 |
-
depth_map_output = ... # Depth map visualization
|
| 9 |
-
variable_blur_output = ... # Variable Gaussian blur
|
| 10 |
-
|
| 11 |
-
return segmented_output, depth_map_output, variable_blur_output
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
app = gr.Interface(
|
| 14 |
fn=process_image,
|
| 15 |
-
inputs=
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
)
|
| 20 |
|
| 21 |
app.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from PIL import Image, ImageFilter
|
| 4 |
+
import numpy as np
|
| 5 |
|
| 6 |
+
# Load models from Hugging Face
|
| 7 |
+
segmentation_model = pipeline("image-segmentation", model="nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
| 8 |
+
depth_estimator = pipeline("depth-estimation", model="Intel/zoedepth-nyu-kitti")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
def process_image(image, blur_type, sigma):
|
| 11 |
+
# Step 1: Perform segmentation
|
| 12 |
+
segmentation_results = segmentation_model(image)
|
| 13 |
+
foreground_mask = segmentation_results[-1]["mask"]
|
| 14 |
+
|
| 15 |
+
# Step 2: Apply Gaussian blur to background
|
| 16 |
+
blurred_background = image.filter(ImageFilter.GaussianBlur(sigma))
|
| 17 |
+
segmented_output = Image.composite(image, blurred_background, foreground_mask)
|
| 18 |
+
|
| 19 |
+
# Step 3: Perform depth estimation
|
| 20 |
+
depth_results = depth_estimator(image)
|
| 21 |
+
depth_map = depth_results["depth"]
|
| 22 |
+
|
| 23 |
+
# Step 4: Normalize depth map values
|
| 24 |
+
depth_array = np.array(depth_map)
|
| 25 |
+
normalized_depth = (depth_array - np.min(depth_array)) / (np.max(depth_array) - np.min(depth_array)) * 255
|
| 26 |
+
normalized_depth_image = Image.fromarray(normalized_depth.astype('uint8'))
|
| 27 |
+
|
| 28 |
+
# Step 5: Apply variable Gaussian blur based on depth map (Lens Blur)
|
| 29 |
+
if blur_type == "Lens Blur":
|
| 30 |
+
variable_blur_image = image.copy()
|
| 31 |
+
for x in range(variable_blur_image.width):
|
| 32 |
+
for y in range(variable_blur_image.height):
|
| 33 |
+
blur_intensity = normalized_depth[y, x] / 255 * sigma # Scale blur intensity by depth value
|
| 34 |
+
pixel_value = image.getpixel((x, y))
|
| 35 |
+
variable_blur_image.putpixel((x, y), tuple(int(p * blur_intensity) for p in pixel_value))
|
| 36 |
+
output_image = variable_blur_image
|
| 37 |
+
else:
|
| 38 |
+
output_image = segmented_output
|
| 39 |
+
|
| 40 |
+
return segmented_output, normalized_depth_image, output_image
|
| 41 |
+
|
| 42 |
+
# Create Gradio interface
|
| 43 |
app = gr.Interface(
|
| 44 |
fn=process_image,
|
| 45 |
+
inputs=[
|
| 46 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 47 |
+
gr.Radio(["Gaussian Blur", "Lens Blur"], label="Blur Type", value="Gaussian Blur"),
|
| 48 |
+
gr.Slider(0, 50, step=1, label="Blur Intensity (Sigma)", value=15)
|
| 49 |
+
],
|
| 50 |
+
outputs=[
|
| 51 |
+
gr.Image(type="pil", label="Segmented Output with Background Blur"),
|
| 52 |
+
gr.Image(type="pil", label="Depth Map Visualization"),
|
| 53 |
+
gr.Image(type="pil", label="Final Output with Selected Blur")
|
| 54 |
+
],
|
| 55 |
+
title="Vision Transformer Segmentation & Depth-Based Blur Effects",
|
| 56 |
+
description="Upload an image and select the type of blur effect (Gaussian or Lens). Adjust the blur intensity using the slider."
|
| 57 |
)
|
| 58 |
|
| 59 |
app.launch()
|