Spaces:
Paused
Paused
| from torch import nn | |
| import torch.nn.functional as F | |
| import torch | |
| class AntiAliasInterpolation2d(nn.Module): | |
| """ | |
| Band-limited downsampling, for better preservation of the input signal. | |
| """ | |
| def __init__(self, channels, scale): | |
| super(AntiAliasInterpolation2d, self).__init__() | |
| sigma = (1 / scale - 1) / 2 | |
| kernel_size = 2 * round(sigma * 4) + 1 | |
| self.ka = kernel_size // 2 | |
| self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka | |
| kernel_size = [kernel_size, kernel_size] | |
| sigma = [sigma, sigma] | |
| # The gaussian kernel is the product of the | |
| # gaussian function of each dimension. | |
| kernel = 1 | |
| meshgrids = torch.meshgrid( | |
| [ | |
| torch.arange(size, dtype=torch.float32) | |
| for size in kernel_size | |
| ] | |
| ) | |
| for size, std, mgrid in zip(kernel_size, sigma, meshgrids): | |
| mean = (size - 1) / 2 | |
| kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) | |
| # Make sure sum of values in gaussian kernel equals 1. | |
| kernel = kernel / torch.sum(kernel) | |
| # Reshape to depthwise convolutional weight | |
| kernel = kernel.view(1, 1, *kernel.size()) | |
| kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) | |
| self.register_buffer('weight', kernel) | |
| self.groups = channels | |
| self.scale = scale | |
| inv_scale = 1 / scale | |
| self.int_inv_scale = int(inv_scale) | |
| def forward(self, input): | |
| if self.scale == 1.0: | |
| return input | |
| out = F.pad(input, (self.ka, self.kb, self.ka, self.kb)) | |
| out = F.conv2d(out, weight=self.weight, groups=self.groups) | |
| out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale] | |
| return out | |