File size: 24,648 Bytes
9ad2a14
 
 
 
 
 
 
 
 
 
 
 
 
ee435ba
9ad2a14
 
 
 
 
 
 
e075b97
b9b0369
 
 
9ad2a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bcdcdc
e075b97
0bcdcdc
66688ed
 
 
 
 
e075b97
 
9ad2a14
 
 
 
 
 
 
e075b97
 
9ad2a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
"""
Gradio app wrapping your diarization + separation + enhancement + transcription pipeline.
"""

import os
import tempfile
import math
import json
import shutil
import time
from datetime import timedelta
from pathlib import Path
from typing import List, Tuple
import inspect

import re
import numpy as np
import soundfile as sf
import librosa
import noisereduce as nr
import gradio as gr
import huggingface_hub
from pyannote.audio import Pipeline, Model
from speechbrain.pretrained import SepformerSeparation as Sepformer
from speechbrain.pretrained import SpectralMaskEnhancement as Enhancer

# Lazy imports (heavy models) will be done inside the worker function
# to keep the app responsive on startup.

# -----------------------
# Configuration defaults
# -----------------------
SAMPLE_RATE = 16000
CHUNK_DURATION = 8.0
KEYWORDS = ["red", "yellow", "green"]
HF_TOKEN_E = os.environ.get("HF_TOKEN")

# -----------------------
# Helper utilities
# -----------------------

def time_to_samples(t: float, sr: int) -> int:
    return int(round(t * sr))


def save_wav(path: str, data: np.ndarray, sr: int = SAMPLE_RATE):
    sf.write(path, data.astype(np.float32), sr)


# -----------------------
# Transcription helper
# -----------------------

def transcribe_audio_array_with_whisper(audio: np.ndarray, sr: int, whisper_model) -> dict:
    """Whisper expects a file path; write to temp wav then transcribe."""
    tmp = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
    try:
        sf.write(tmp.name, audio.astype(np.float32), sr)
        res = whisper_model.transcribe(tmp.name, task="transcribe", fp16=False, language=None)
        return res
    except Exception as e:
        return {"text": "", "segments": []}
    finally:
        try:
            tmp.close()
            os.unlink(tmp.name)
        except Exception:
            pass


def transcribe_file_with_whisper(wav_path: str, whisper_model) -> dict:
    try:
        res = whisper_model.transcribe(wav_path, task="transcribe", fp16=False, language=None)
        return res
    except Exception as e:
        return {"text": "", "segments": []}


# -----------------------
# Keyword finder
# -----------------------

def find_keywords_in_text(text: str, keywords: List[str]) -> List[Tuple[str, int]]:
    found = []
    for kw in keywords:
        for match in re.finditer(rf"\b{re.escape(kw)}\b", text, flags=re.IGNORECASE):
            found.append((kw, match.start()))
    return found


# -----------------------
# Main pipeline (wrapped for Gradio streaming)
# -----------------------

def pipeline_worker(video_file_path: str, keywords: List[str]):
    """
    Generator function that yields progress logs and finally returns (log, file_list, keyword_log, transcripts_json_path)
    The Gradio interface will call this function and stream the logs.
    """
    # Prepare temporary output directory per-run
    run_dir = tempfile.mkdtemp(prefix="diarize_run_")
    out_dir = os.path.join(run_dir, "out")
    os.makedirs(out_dir, exist_ok=True)

    logs = []

    def emit(message: str):
        nonlocal logs
        logs.append(message)
        yield "\n".join(logs), "", "", ""

    # 1) Convert mp4 to wav (use moviepy)
    yield from emit(f"Starting run — saving outputs to: {out_dir}")

    try:
        from moviepy.editor import VideoFileClip
    except Exception as e:
        yield from emit(f"ERROR: moviepy import failed: {e}")
        return

    wav_path = os.path.join(run_dir, "input_audio.wav")
    try:
        yield from emit("Extracting audio from video...")
        clip = VideoFileClip(video_file_path)
        clip.audio.write_audiofile(wav_path, codec="pcm_s16le")
        clip.close()
        yield from emit(f"Saved extracted audio: {wav_path}")
    except Exception as e:
        yield from emit(f"ERROR extracting audio: {e}")
        return

    # 2) Load audio (librosa)
    try:
        y, sr = librosa.load(wav_path, sr=SAMPLE_RATE, mono=True)
        duration = len(y) / sr
        yield from emit(f"Loaded audio: {duration:.1f}s @ {sr}Hz")
    except Exception as e:
        yield from emit(f"ERROR loading audio: {e}")
        return

    _original_hf_hub_download = huggingface_hub.hf_hub_download

    if "use_auth_token" not in inspect.signature(huggingface_hub.hf_hub_download).parameters:
        def hf_hub_download_patch(*args, use_auth_token=None, **kwargs):
            if use_auth_token is not None:
                kwargs["token"] = use_auth_token
            return huggingface_hub.hf_hub_download(*args, **kwargs)
        huggingface_hub.hf_hub_download = hf_hub_download_patch


    # Lazy-load heavy models
    yield from emit("Loading diarization & embedding models (this can take a while)...")
    HF_TOKEN = os.environ.get("HF_TOKEN_1")

    try:
        from pyannote.audio import Pipeline, Model
        # diarize_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization@2022.07", use_auth_token=HF_TOKEN)
        diarize_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token =HF_TOKEN_E)
        embedding_model = Model.from_pretrained("pyannote/embedding", use_auth_token = HF_TOKEN_E)
        
        yield from emit("pyannote models loaded.")
    except Exception as e:
        yield from emit(f"WARNING: pyannote models failed to load: {e}\nDiarization may not work.")
        diarize_pipeline = None
        embedding_model = None

    # Load separation & enhancement (speechbrain) lazily
    try:
        from speechbrain.pretrained import SepformerSeparation as Sepformer
        from speechbrain.pretrained import SpectralMaskEnhancement as Enhancer
        sepformer = Sepformer.from_hparams(source="speechbrain/sepformer-whamr", savedir=os.path.join(run_dir, "tmp_speechbrain_sepformer"))
        enhancer = Enhancer.from_hparams(source="speechbrain/metricgan-plus-voicebank", savedir=os.path.join(run_dir, "tmp_speechbrain_enh"))
        yield from emit("Speechbrain sepformer + enhancer loaded.")
    except Exception as e:
        yield from emit(f"WARNING: speechbrain models failed to load: {e}\nSeparation/enhancement fallbacks will be used.")
        sepformer = None
        enhancer = None

    # Load whisper model lazily
    try:
        import whisper
        whisper_model = whisper.load_model("large-v3", device="cpu")
        yield from emit("Whisper loaded (large-v3) on CPU.")
    except Exception as e:
        yield from emit(f"ERROR loading Whisper model: {e}")
        whisper_model = None

    # run diarization
    if diarize_pipeline is None:
        yield from emit("Skipping diarization (pipeline unavailable). Creating single ""speaker_0"" segment covering full audio.")
        diarization = None
        speakers = ["SPEAKER_0"]
        segments = [ (0.0, duration, "SPEAKER_0") ]
    else:
        yield from emit("Running diarization... This may take a while.")
        try:
            diarization = diarize_pipeline({"audio": wav_path})
            speakers = sorted({label for segment, track, label in diarization.itertracks(yield_label=True)})
            yield from emit(f"Detected speakers: {speakers}")
        except Exception as e:
            yield from emit(f"ERROR during diarization: {e}")
            diarization = None
            speakers = ["SPEAKER_0"]

    # Prepare speaker buffers
    speaker_buffers = {sp: [] for sp in speakers}
    transcriptions = []

    # Helper to compute embedding from numpy audio (if model available)
    def embedding_from_audio(audio_np: np.ndarray):
        if embedding_model is None:
            return np.zeros((1, 256))
        waveform = audio_np.reshape(1, -1)
        try:
            emb = embedding_model({'waveform': waveform, 'sample_rate': SAMPLE_RATE})
            return emb.data.numpy().reshape(1, -1)
        except Exception:
            return np.zeros((1, 256))

    # Iterate through diarized segments (or single fallback)
    yield from emit("Processing diarized segments (separation/enhancement/transcription)...")

    if diarization is None:
        segments_iter = [(0.0, duration, "SPEAKER_0")]
    else:
        segments_iter = [(seg.start, seg.end, lbl) for seg, _, lbl in diarization.itertracks(yield_label=True)]

    for idx, (start, end, label) in enumerate(segments_iter):
        seg_dur = end - start
        a_samp = time_to_samples(start, sr)
        b_samp = time_to_samples(end, sr)
        seg_audio = y[a_samp:b_samp]

        yield from emit(f"Segment {idx+1}/{len(segments_iter)}: {label} [{start:.2f}-{end:.2f}] ({seg_dur:.2f}s)")

        # Detect overlaps (simple check)
        is_overlap = False
        if diarization is not None:
            overlapped_labels = [lbl for s2, _, lbl in diarization.itertracks(yield_label=True) if s2.start < end and s2.end > start and lbl != label]
            is_overlap = len(overlapped_labels) > 0

        # Non-overlap & short => enhance and append
        if not is_overlap and seg_dur <= CHUNK_DURATION:
            # attempt enhancer
            try:
                if enhancer is not None:
                    import torch
                    wav_tensor = torch.tensor(seg_audio).float().unsqueeze(0)
                    enhanced = enhancer.enhance_batch(wav_tensor).squeeze(0).numpy()
                else:
                    raise Exception("enhancer unavailable")
            except Exception:
                enhanced = nr.reduce_noise(y=seg_audio, sr=sr)

            speaker_buffers[label].append(enhanced.flatten())

            # transcribe
            if whisper_model is not None:
                try:
                    res = transcribe_audio_array_with_whisper(enhanced, sr, whisper_model)
                    transcript_text = res.get("text", "").strip()
                except Exception:
                    transcript_text = "[Transcription failed]"
            else:
                transcript_text = "[Whisper unavailable]"

            transcriptions.append({
                "speaker": label,
                "start": float(start),
                "end": float(end),
                "duration": float(seg_dur),
                "text": transcript_text,
            })

        else:
            # Overlapped or long: chunk, separate, embed, match to prototypes
            samples = seg_audio
            n_chunks = max(1, math.ceil(len(samples) / int(CHUNK_DURATION * sr)))
            chunk_size = int(len(samples) / n_chunks)

            for i in range(n_chunks):
                a = i * chunk_size
                b = min(len(samples), (i + 1) * chunk_size)
                chunk = samples[a:b]
                if len(chunk) < 100:
                    continue

                # Try sepformer separation
                est_sources = None
                try:
                    if sepformer is not None:
                        # speechbrain sepformer has a separate_file_chunkwise or separate_file; attempt both
                        try:
                            est_sources = sepformer.separate_file_chunkwise(batch_audio=chunk, sample_rate=sr)
                        except Exception:
                            tmpf = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
                            sf.write(tmpf.name, chunk, sr)
                            est = sepformer.separate_file(tmpf.name)
                            tmpf.close()
                            os.unlink(tmpf.name)
                            est_sources = est
                except Exception:
                    est_sources = None

                if est_sources is None:
                    # fallback: attempt simple split into two channels (if mono, duplicate) — conservative fallback
                    est_sources = [chunk, chunk]

                # Compute embeddings
                embeddings = []
                for src in est_sources:
                    try:
                        emb = embedding_from_audio(np.asarray(src).flatten())
                    except Exception:
                        emb = np.zeros((1, 256))
                    embeddings.append(emb)

                # Speaker prototypes
                speaker_protos = {}
                for sp in speakers:
                    if len(speaker_buffers[sp]) > 0:
                        ex = np.concatenate([np.asarray(p).flatten() for p in speaker_buffers[sp][:1]])
                        speaker_protos[sp] = embedding_from_audio(ex)
                    else:
                        speaker_protos[sp] = None

                for src_idx, emb in enumerate(embeddings):
                    best_sp, best_sim = None, -1
                    for sp in speakers:
                        proto = speaker_protos[sp]
                        if proto is None:
                            continue
                        try:
                            from sklearn.metrics.pairwise import cosine_similarity
                            sim = cosine_similarity(emb, proto)[0, 0]
                        except Exception:
                            sim = -1
                        if sim > best_sim:
                            best_sim = sim
                            best_sp = sp

                    assign_to = best_sp if best_sp is not None else speakers[src_idx % len(speakers)]
                    speaker_buffers[assign_to].append(np.asarray(est_sources[src_idx]).flatten())

                    # Transcribe separated chunk
                    if whisper_model is not None:
                        try:
                            res = transcribe_audio_array_with_whisper(np.asarray(est_sources[src_idx]).flatten(), sr, whisper_model)
                            transcript_text = res.get("text", "").strip()
                        except Exception:
                            transcript_text = "[Transcription failed]"
                    else:
                        transcript_text = "[Whisper unavailable]"

                    transcriptions.append({
                        "speaker": assign_to,
                        "start": float(start + a / sr),
                        "end": float(start + b / sr),
                        "duration": float((b - a) / sr),
                        "text": transcript_text,
                    })

        # Emit progress after each segment
        yield from emit(f"Processed segment {idx+1}/{len(segments_iter)}")

    # After processing all segments: write per-speaker concatenated wavs
    yield from emit("Concatenating speaker buffers and saving speaker wav files...")
    generated_files = []
    for sp, pieces in speaker_buffers.items():
        if len(pieces) == 0:
            continue
        out = np.concatenate([np.asarray(p).flatten() for p in pieces])
        out_path = os.path.join(out_dir, f"{sp}.wav")
        save_wav(out_path, out, sr)
        generated_files.append(out_path)
        yield from emit(f"Saved speaker file: {out_path}")

    # Build residual noise track (simple reconstruction)
    yield from emit("Building residual noise track...")
    recon = np.zeros_like(y)
    cursor = 0
    for sp, pieces in speaker_buffers.items():
        if len(pieces) == 0:
            continue
        recon_piece = np.concatenate([np.asarray(p).flatten() for p in pieces])
        length = min(len(recon_piece), len(recon) - cursor)
        if length <= 0:
            continue
        recon[cursor:cursor+length] += recon_piece[:length]
        cursor += length

    residual = y - recon
    residual_path = os.path.join(out_dir, "noise_residual.wav")
    save_wav(residual_path, residual, sr)
    generated_files.append(residual_path)
    yield from emit(f"Saved residual: {residual_path}")

    # Save timestamped transcriptions (from the `transcriptions` built earlier)
    transcript_file = os.path.join(out_dir, "timestamped_transcriptions.json")
    with open(transcript_file, "w", encoding="utf-8") as f:
        json.dump(transcriptions, f, indent=2, ensure_ascii=False)
    generated_files.append(transcript_file)
    yield from emit(f"Saved timestamped transcriptions: {transcript_file}")

    # Run a second pass: run whisper on each speaker file for segments (detailed JSON)
    yield from emit("Running final Whisper pass on each speaker file to produce detailed transcripts...")
    detailed_paths = []
    for sp in speakers:
        sp_wav_path = os.path.join(out_dir, f"{sp}.wav")
        if not os.path.exists(sp_wav_path):
            continue
        if whisper_model is not None:
            res = transcribe_file_with_whisper(sp_wav_path, whisper_model)
            text = res.get("text", "").strip()
            segments = res.get("segments", [])
        else:
            text = ""
            segments = []

        json_path = os.path.join(out_dir, f"{sp}_transcript.json")
        with open(json_path, "w", encoding="utf-8") as fj:
            json.dump({"speaker": sp, "text": text, "segments": segments}, fj, indent=2, ensure_ascii=False)
        detailed_paths.append(json_path)
        generated_files.append(json_path)
        yield from emit(f"Saved detailed JSON: {json_path}")

    # Keyword scanning
    yield from emit("Scanning transcripts for keywords...")
    keyword_log_lines = []
    for sp in speakers:
        json_path = os.path.join(out_dir, f"{sp}_transcript.json")
        if not os.path.exists(json_path):
            continue
        with open(json_path, "r", encoding="utf-8") as f:
            data = json.load(f)
        text = data.get("text", "")
        segments = data.get("segments", [])

        if segments:
            for seg in segments:
                seg_text = seg.get("text", "")
                seg_start = seg.get("start", 0)
                seg_end = seg.get("end", 0)
                hits = find_keywords_in_text(seg_text, keywords)
                if hits:
                    s_td = str(timedelta(seconds=float(seg_start)))
                    e_td = str(timedelta(seconds=float(seg_end)))
                    line = f"Speaker: {sp}  [{s_td} --> {e_td}]  Text: {seg_text.strip()}"
                    keyword_log_lines.append(line)
        else:
            hits = find_keywords_in_text(text, keywords)
            if hits:
                line = f"Speaker: {sp}  [No segment timestamps available]  Excerpt: {text.strip()[:200]}"
                keyword_log_lines.append(line)

    if len(keyword_log_lines) == 0:
        keyword_log = "No keyword matches found."
    else:
        keyword_log = "\n".join(keyword_log_lines)

    yield from emit("Keyword scan complete.")

    # Final return: logs, list of generated files (as newline list), keywords, path to timestamped JSON
    file_list_text = "\n".join(generated_files)

    yield "\n".join(logs), file_list_text, keyword_log, transcript_file













# # -----------------------
# # Gradio UI
# # -----------------------

# def build_interface():
#     with gr.Blocks() as demo:
#         gr.Markdown("# Voice Analysis (Diarisation and Signal Identification)\nUpload an MP4 and click Run to start analysis.")

#         with gr.Row():
#             video_in = gr.Video(label="Input video (.mp4)")
#             keywords_in = gr.Textbox(value=",".join(KEYWORDS), label="Keywords (comma separated)")

#         run_btn = gr.Button("Run")

#         with gr.Row():
#             # logs_out = gr.Textbox(label="Progress logs", lines=20)
#             # files_out = gr.Textbox(label="Generated files (saved in temp run folder)", lines=20)

#             keywords_out = gr.Textbox(label="Keyword matches (console-style)", lines=5)
#             transcript_json_out = gr.Textbox(label="Timestamped transcript JSON path")

#         # Loading indicator (spinner)
#         with gr.Row():
#             status_msg = gr.Markdown("⏳ *Idle...*")


#                 # Add a JSON viewer for transcript preview
#         with gr.Accordion("📜 View Detailed Transcript JSON", open=False):
#             transcript_view = gr.JSON(label="Transcript Data (Timestamps + Text)")

#         # Function to open and display transcript JSON file
#         def open_transcript_json(json_path):
#             if not os.path.exists(json_path):
#                 return {"error": "File not found"}
#             try:
#                 with open(json_path, "r", encoding="utf-8") as f:
#                     data = json.load(f)
#                 return data
#             except Exception as e:
#                 return {"error": str(e)}

#         # Button to view JSON file content
#         view_btn = gr.Button("Open Transcript JSON")
#         view_btn.click(fn=open_transcript_json, inputs=transcript_json_out, outputs=transcript_view)

#         def run_and_stream(video_path, keywords_text, progress=gr.Progress(track_tqdm=True)):
#             progress(0, desc="Starting analysis...")
#             keys = [k.strip() for k in keywords_text.split(",") if k.strip()]
#             gen = pipeline_worker(video_path, keys)
#             for out in gen:
#                 yield out

#             # Update status to "Processing..."
#             yield "Processing...", "", "⏳ **Processing... Please wait.**"

#             for out in pipeline_worker(video_path, keys):
#                 progress(0.5, desc="Running pipeline...")
#                 yield out, "", "⚙️ **Working...**"

#             # Done
#             progress(1, desc="Completed!")
#             yield "Processing done", "Processing complete", "✅ **Processing done!**"

#         # -----------------------
#         # Attach button to function
#         # -----------------------
#         run_btn.click(
#             fn=run_and_stream,
#             inputs=[video_in, keywords_in],
#             outputs=[keywords_out, transcript_json_out, status_msg]
#         )


    
#         # def run_and_stream(video_path, keywords_text):
#         #     keys = [k.strip() for k in keywords_text.split(",") if k.strip()]
#         #     gen = pipeline_worker(video_path, keys)
#         #     for out in gen:
#         #         yield out
#         #     yield "Processing done", "Output is ready"

#         # # run_btn.click(fn=run_and_stream, inputs=[video_in, keywords_in], outputs=[logs_out, files_out, keywords_out, transcript_json_out])
#         # run_btn.click(fn=run_and_stream, inputs=[video_in, keywords_in], outputs=[keywords_out, transcript_json_out])


#     return demo



# -----------------------
# Gradio UI
# -----------------------

def build_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Voice Analysis (Diarisation and Signal Identification)\nUpload an MP4 and click Run to start analysis.")

        with gr.Row():
            video_in = gr.Video(label="Input video (.mp4)")
            keywords_in = gr.Textbox(value=",".join(KEYWORDS), label="Keywords (comma separated)")

        run_btn = gr.Button("Run")

        with gr.Row():
            logs_out = gr.Textbox(label="Progress logs", lines=20)
            files_out = gr.Textbox(label="Generated files (saved in temp run folder)", lines=20)

        with gr.Row():
            keywords_out = gr.Textbox(label="Keyword matches (console-style)", lines=5)
            transcript_json_out = gr.Textbox(label="Timestamped transcript JSON path")

                # Add a JSON viewer for transcript preview
        with gr.Accordion("📜 View Detailed Transcript JSON", open=False):
            transcript_view = gr.JSON(label="Transcript Data (Timestamps + Text)")

         # Function to open and display transcript JSON file
        def open_transcript_json(json_path):
            if not os.path.exists(json_path):
                return {"error": "File not found"}
            try:
                with open(json_path, "r", encoding="utf-8") as f:
                    data = json.load(f)
                return data
            except Exception as e:
                return {"error": str(e)}

        # Button to view JSON file content
        view_btn = gr.Button("Open Transcript JSON")
        view_btn.click(fn=open_transcript_json, inputs=transcript_json_out, outputs=transcript_view)

        def run_and_stream(video_path, keywords_text):
            keys = [k.strip() for k in keywords_text.split(",") if k.strip()]
            gen = pipeline_worker(video_path, keys)
            for out in gen:
                yield out

        run_btn.click(fn=run_and_stream, inputs=[video_in, keywords_in], outputs=[logs_out, files_out, keywords_out, transcript_json_out])
        # run_btn.click(fn=run_and_stream, inputs=[video_in, keywords_in], outputs=[keywords_out, transcript_json_out])


    return demo

app = build_interface()

if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860)