Spaces:
Running
Running
File size: 13,621 Bytes
60efa5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from typing import List
from contextlib import asynccontextmanager
import os
import uuid
import shutil
import json
from pathlib import Path
from datetime import datetime
from pipeline import DeepfakeDetectionPipeline
analysis_history = []
MAX_HISTORY = 10
@asynccontextmanager
async def lifespan(app: FastAPI):
yield
app = FastAPI(
title="DeepDefend API",
description="Advanced Deepfake Detection System with Multi-Modal Analysis",
version="1.0.0",
lifespan=lifespan
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
UPLOAD_DIR = Path("uploads")
UPLOAD_DIR.mkdir(exist_ok=True)
pipeline = None
def get_pipeline():
global pipeline
if pipeline is None:
print("Loading DeepDefend Pipeline...")
pipeline = DeepfakeDetectionPipeline()
return pipeline
class AnalysisResult(BaseModel):
verdict: str
confidence: float
overall_scores: dict
detailed_analysis: str
suspicious_intervals: list
total_intervals_analyzed: int
video_info: dict
analysis_id: str
timestamp: str
class HistoryItem(BaseModel):
analysis_id: str
filename: str
verdict: str
confidence: float
timestamp: str
video_duration: float
class StatsResponse(BaseModel):
total_analyses: int
deepfakes_detected: int
real_videos: int
avg_confidence: float
avg_video_score: float
avg_audio_score: float
class IntervalDetail(BaseModel):
interval_id: int
time_range: str
video_score: float
audio_score: float
verdict: str
suspicious_regions: dict
def add_to_history(analysis_data: dict):
"""Add analysis to history"""
history_item = {
"analysis_id": analysis_data["analysis_id"],
"filename": analysis_data["filename"],
"verdict": analysis_data["verdict"],
"confidence": analysis_data["confidence"],
"timestamp": analysis_data["timestamp"],
"video_duration": analysis_data["video_info"]["duration"],
"overall_scores": analysis_data["overall_scores"]
}
analysis_history.insert(0, history_item)
if len(analysis_history) > MAX_HISTORY:
analysis_history.pop()
@app.get("/")
async def root():
return {
"service": "DeepDefend API",
"version": "1.0.0",
"status": "online",
"description": "Advanced Multi-Modal Deepfake Detection",
"features": [
"Video frame-by-frame analysis",
"Audio deepfake detection",
"AI-powered evidence fusion",
"Frame-level heatmap generation",
"Interval breakdown analysis",
"Analysis history tracking"
],
"endpoints": {
"analyze": "POST /api/analyze",
"history": "GET /api/history",
"stats": "GET /api/stats",
"intervals": "GET /api/intervals/{analysis_id}",
"compare": "GET /api/compare",
"health": "GET /api/health"
}
}
@app.get("/api/health")
async def health():
"""Health check with system info"""
return {
"status": "healthy",
"pipeline_loaded": pipeline is not None,
"total_analyses": len(analysis_history),
"storage_used_mb": sum(
f.stat().st_size for f in UPLOAD_DIR.glob('*') if f.is_file()
) / (1024 * 1024) if UPLOAD_DIR.exists() else 0,
"timestamp": datetime.now().isoformat()
}
@app.post("/api/analyze", response_model=AnalysisResult)
async def analyze_video(
file: UploadFile = File(...),
interval_duration: float = Query(default=2.0, ge=1.0, le=5.0)
):
"""
Upload and analyze video for deepfakes
Returns complete analysis with:
- Overall verdict and confidence
- Video/audio scores
- Suspicious intervals
- AI-generated detailed analysis
"""
allowed_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.webm']
file_ext = os.path.splitext(file.filename)[1].lower()
if file_ext not in allowed_extensions:
raise HTTPException(
status_code=400,
detail=f"Invalid file type. Allowed: {', '.join(allowed_extensions)}"
)
file.file.seek(0, 2)
file_size = file.file.tell()
file.file.seek(0)
if file_size > 250 * 1024 * 1024:
raise HTTPException(status_code=400, detail="File too large. Max: 250MB")
if file_size < 100 * 1024:
raise HTTPException(status_code=400, detail="File too small. Min: 100KB")
analysis_id = str(uuid.uuid4())
video_path = UPLOAD_DIR / f"{analysis_id}{file_ext}"
try:
with open(video_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
pipe = get_pipeline()
print(f"\nAnalyzing: {file.filename}")
results = pipe.analyze_video(str(video_path), interval_duration)
final_report = results['final_report']
video_info = results['video_info']
analysis_data = {
"analysis_id": analysis_id,
"filename": file.filename,
"verdict": final_report['verdict'],
"confidence": final_report['confidence'],
"overall_scores": final_report['overall_scores'],
"detailed_analysis": final_report['detailed_analysis'],
"suspicious_intervals": final_report['suspicious_intervals'],
"total_intervals_analyzed": final_report['total_intervals_analyzed'],
"video_info": {
"duration": video_info['duration'],
"fps": video_info['fps'],
"total_frames": video_info['total_frames'],
"file_size_mb": round(file_size / (1024 * 1024), 2)
},
"timestamp": datetime.now().isoformat()
}
add_to_history(analysis_data)
interval_data = {
'analysis_id': analysis_id,
'timeline': [
{
'interval_id': interval['interval_id'],
'interval': interval['interval'],
'start': interval['start'],
'end': interval['end'],
'video_results': interval.get('video_results'),
'audio_results': interval.get('audio_results')
}
for interval in results.get('timeline', [])
]
}
results_path = UPLOAD_DIR / f"{analysis_id}_results.json"
with open(results_path, 'w') as f:
json.dump(interval_data, f, indent=2)
return AnalysisResult(**analysis_data)
except Exception as e:
print(f"Error: {e}")
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
finally:
if video_path.exists():
os.remove(video_path)
@app.get("/api/history", response_model=List[HistoryItem])
async def get_history(limit: int = Query(default=10, ge=1, le=50)):
"""Get recent analysis history"""
return [
HistoryItem(
analysis_id=item["analysis_id"],
filename=item["filename"],
verdict=item["verdict"],
confidence=item["confidence"],
timestamp=item["timestamp"],
video_duration=item["video_duration"]
)
for item in analysis_history[:limit]
]
@app.get("/api/stats", response_model=StatsResponse)
async def get_stats():
"""Get overall statistics"""
if not analysis_history:
return StatsResponse(
total_analyses=0,
deepfakes_detected=0,
real_videos=0,
avg_confidence=0.0,
avg_video_score=0.0,
avg_audio_score=0.0
)
deepfakes = sum(1 for item in analysis_history if item["verdict"] == "DEEPFAKE")
real = len(analysis_history) - deepfakes
avg_confidence = sum(item["confidence"] for item in analysis_history) / len(analysis_history)
avg_video = sum(item["overall_scores"]["overall_video_score"] for item in analysis_history) / len(analysis_history)
avg_audio = sum(item["overall_scores"]["overall_audio_score"] for item in analysis_history) / len(analysis_history)
return StatsResponse(
total_analyses=len(analysis_history),
deepfakes_detected=deepfakes,
real_videos=real,
avg_confidence=round(avg_confidence, 2),
avg_video_score=round(avg_video, 3),
avg_audio_score=round(avg_audio, 3)
)
@app.get("/api/intervals/{analysis_id}")
async def get_interval_details(analysis_id: str):
"""Get detailed interval-by-interval breakdown"""
results_path = UPLOAD_DIR / f"{analysis_id}_results.json"
if not results_path.exists():
raise HTTPException(status_code=404, detail="Analysis not found")
with open(results_path, 'r') as f:
interval_data = json.load(f)
timeline = interval_data.get('timeline', [])
intervals = []
for interval in timeline:
video_res = interval.get('video_results', {})
audio_res = interval.get('audio_results', {})
avg_score = (video_res.get('fake_score', 0) + audio_res.get('fake_score', 0)) / 2
intervals.append({
"interval_id": interval['interval_id'],
"time_range": interval['interval'],
"start": interval['start'],
"end": interval['end'],
"video_score": video_res.get('fake_score', 0),
"audio_score": audio_res.get('fake_score', 0),
"combined_score": round(avg_score, 3),
"verdict": "SUSPICIOUS" if avg_score > 0.6 else "NORMAL",
"suspicious_regions": {
"video": video_res.get('suspicious_regions', []),
"audio": audio_res.get('suspicious_regions', [])
},
"has_face": video_res.get('face_detected', False),
"has_audio": audio_res.get('has_audio', False)
})
return {
"analysis_id": analysis_id,
"total_intervals": len(intervals),
"intervals": intervals
}
@app.get("/api/compare")
async def compare_scores():
"""Compare video vs audio detection rates"""
if not analysis_history:
return {
"message": "No analysis data available",
"comparison": None
}
video_higher = 0
audio_higher = 0
equal = 0
for item in analysis_history:
scores = item["overall_scores"]
v_score = scores["overall_video_score"]
a_score = scores["overall_audio_score"]
if v_score > a_score:
video_higher += 1
elif a_score > v_score:
audio_higher += 1
else:
equal += 1
return {
"total_analyses": len(analysis_history),
"comparison": {
"video_better_detection": video_higher,
"audio_better_detection": audio_higher,
"equal_detection": equal
},
"percentages": {
"video_dominant": round((video_higher / len(analysis_history)) * 100, 1),
"audio_dominant": round((audio_higher / len(analysis_history)) * 100, 1),
"balanced": round((equal / len(analysis_history)) * 100, 1)
}
}
@app.get("/api/recent-verdict")
async def get_recent_verdict_distribution(limit: int = Query(default=20, ge=5, le=50)):
"""Get verdict distribution for recent analyses"""
recent = analysis_history[:limit]
if not recent:
return {
"total": 0,
"deepfakes": 0,
"real": 0,
"distribution": []
}
deepfakes = sum(1 for item in recent if item["verdict"] == "DEEPFAKE")
real = len(recent) - deepfakes
distribution = {
"very_confident": 0,
"confident": 0,
"moderate": 0,
"low": 0
}
for item in recent:
conf = item["confidence"]
if conf >= 80:
distribution["very_confident"] += 1
elif conf >= 60:
distribution["confident"] += 1
elif conf >= 40:
distribution["moderate"] += 1
else:
distribution["low"] += 1
return {
"total": len(recent),
"deepfakes": deepfakes,
"real": real,
"deepfake_rate": round((deepfakes / len(recent)) * 100, 1),
"confidence_distribution": distribution
}
@app.delete("/api/clear-history")
async def clear_history():
"""Clear analysis history (for demo reset)"""
global analysis_history
count = len(analysis_history)
analysis_history.clear()
for file in UPLOAD_DIR.glob("*_results.json"):
os.remove(file)
return {
"message": "History cleared",
"items_removed": count
}
@app.exception_handler(HTTPException)
async def http_exception_handler(request, exc):
return JSONResponse(
status_code=exc.status_code,
content={"error": exc.detail, "status_code": exc.status_code}
)
@app.exception_handler(Exception)
async def global_exception_handler(request, exc):
print(f"Error: {exc}")
return JSONResponse(
status_code=500,
content={"error": "Internal server error", "detail": str(exc)}
) |