File size: 6,670 Bytes
5b7ca6d
 
 
 
 
60efa5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
os.environ['LIBROSA_CACHE_DIR'] = '/tmp'
os.environ['JOBLIB_TEMP_FOLDER'] = '/tmp'
os.environ['NUMBA_CACHE_DIR'] = '/tmp'

import torch
import librosa
import numpy as np
from typing import Dict, List
from models.load_models import model_loader

class AudioAnalyzer:
    """Analyzes audio chunks for deepfake detection"""
    
    def __init__(self):
        self.model, self.processor = model_loader.load_audio_model()
        self.device = model_loader.get_device()
    
    def predict_deepfake(self, audio: np.ndarray, sample_rate: int) -> Dict:
        """Predict if audio chunk is deepfake"""
        
        min_length = sample_rate * 1
        if len(audio) < min_length:
            audio = np.pad(audio, (0, min_length - len(audio)))
        
        inputs = self.processor(
            audio,
            sampling_rate=sample_rate,
            return_tensors="pt",
            padding=True
        )
        
        if self.device == "cuda":
            inputs = {k: v.cuda() for k, v in inputs.items()}
        
        with torch.no_grad():
            outputs = self.model(**inputs)
            logits = outputs.logits
            probs = torch.nn.functional.softmax(logits, dim=-1)
        
        fake_prob = probs[0][1].item() if probs.shape[1] > 1 else probs[0][0].item()
        confidence = max(probs[0]).item()
        
        return {
            'fake_score': round(fake_prob, 3),
            'confidence': round(confidence, 3),
            'label': 'fake' if fake_prob > 0.5 else 'real'
        }
    
    def analyze_spectrogram(self, audio: np.ndarray, sample_rate: int, fake_score: float) -> Dict:
        """Analyze audio with adaptive thresholds based on fake_score"""
        try:
            spectral_centroid = librosa.feature.spectral_centroid(y=audio, sr=sample_rate)[0]
            spectral_rolloff = librosa.feature.spectral_rolloff(y=audio, sr=sample_rate)[0]
            zero_crossing_rate = librosa.feature.zero_crossing_rate(audio)[0]
            mfcc = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=13)
            
            suspicious_regions = self._identify_audio_anomalies(
                spectral_centroid, spectral_rolloff, zero_crossing_rate, mfcc, fake_score
            )
            
            return {
                'regions': suspicious_regions,
                'spectral_features': {
                    'avg_spectral_centroid': round(float(np.mean(spectral_centroid)), 2),
                    'avg_spectral_rolloff': round(float(np.mean(spectral_rolloff)), 2),
                    'avg_zero_crossing_rate': round(float(np.mean(zero_crossing_rate)), 3),
                    'mfcc_variance': round(float(np.var(mfcc)), 3)
                }
            }
        
        except Exception as e:
            if fake_score > 0.6:
                return {
                    'regions': ['voice_synthesis_detected', 'audio_artifacts'],
                    'spectral_features': {}
                }
            else:
                return {
                    'regions': ['no_suspicious_patterns'],
                    'spectral_features': {}
                }
    
    def _identify_audio_anomalies(self, spectral_centroid: np.ndarray, spectral_rolloff: np.ndarray, zero_crossing: np.ndarray, mfcc: np.ndarray, fake_score: float) -> List[str]:
        suspicious_regions = []
        
        if fake_score > 0.7:
            pitch_low, pitch_high = 200, 6000
            mfcc_threshold = 25
            zcr_low, zcr_high = 0.02, 0.25
            rolloff_threshold = 3000
            centroid_jump = 800
        elif fake_score > 0.5:
            pitch_low, pitch_high = 250, 5500
            mfcc_threshold = 28
            zcr_low, zcr_high = 0.025, 0.22
            rolloff_threshold = 2700
            centroid_jump = 900
        else:
            pitch_low, pitch_high = 300, 5000
            mfcc_threshold = 30
            zcr_low, zcr_high = 0.03, 0.20
            rolloff_threshold = 2500
            centroid_jump = 1000
        
        pitch_variance = np.var(spectral_centroid)
        if pitch_variance < pitch_low:
            suspicious_regions.append('monotone_voice')
        elif pitch_variance > pitch_high:
            suspicious_regions.append('erratic_pitch')
        
        mfcc_var = np.var(mfcc)
        if mfcc_var < mfcc_threshold:
            suspicious_regions.append('voice_synthesis_artifacts')
        
        zcr_mean = np.mean(zero_crossing)
        if zcr_mean > zcr_high:
            suspicious_regions.append('high_frequency_noise')
        elif zcr_mean < zcr_low:
            suspicious_regions.append('overly_smooth_audio')
        
        rolloff_std = np.std(spectral_rolloff)
        if rolloff_std > rolloff_threshold:
            suspicious_regions.append('spectral_artifacts')
        
        centroid_diff = np.diff(spectral_centroid)
        if len(centroid_diff) > 0 and np.max(np.abs(centroid_diff)) > centroid_jump:
            suspicious_regions.append('audio_splicing')
        
        if np.std(spectral_centroid) < 50:
            suspicious_regions.append('unnatural_consistency')
        
        if fake_score > 0.6 and len(suspicious_regions) == 0:
            suspicious_regions.append('general_audio_manipulation')
        
        return suspicious_regions if suspicious_regions else ['no_suspicious_patterns']
    
    def analyze_interval(self, interval_data: Dict) -> Dict:
        """Analyze audio for a single interval"""
        audio_data = interval_data['audio_data']
        
        if not audio_data or not audio_data.get('has_audio', False):
            return {
                'interval_id': interval_data['interval_id'],
                'interval': interval_data['interval'],
                'fake_score': 0.0,
                'confidence': 0.0,
                'suspicious_regions': ['no_audio'],
                'has_audio': False,
                'spectral_features': {}
            }
        
        audio = audio_data['audio']
        sample_rate = audio_data['sample_rate']
        
        prediction = self.predict_deepfake(audio, sample_rate)
        
        spectrogram_analysis = self.analyze_spectrogram(
            audio, sample_rate, prediction['fake_score']
        )
        
        return {
            'interval_id': interval_data['interval_id'],
            'interval': interval_data['interval'],
            'fake_score': prediction['fake_score'],
            'confidence': prediction['confidence'],
            'suspicious_regions': spectrogram_analysis['regions'],
            'has_audio': True,
            'spectral_features': spectrogram_analysis['spectral_features']
        }