import os os.environ['HF_HOME'] = '/tmp/hf_home' os.environ['LIBROSA_CACHE_DIR'] = '/tmp' os.environ['JOBLIB_TEMP_FOLDER'] = '/tmp' os.environ['NUMBA_CACHE_DIR'] = '/tmp' from fastapi import FastAPI, File, UploadFile, HTTPException, Query from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from pydantic import BaseModel from typing import List from contextlib import asynccontextmanager import uuid import shutil import json from pathlib import Path from datetime import datetime from pipeline import DeepfakeDetectionPipeline analysis_history = [] MAX_HISTORY = 10 @asynccontextmanager async def lifespan(app: FastAPI): yield app = FastAPI( title="DeepDefend API", description="Advanced Deepfake Detection System with Multi-Modal Analysis", version="1.0.0", lifespan=lifespan ) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) UPLOAD_DIR = Path("/tmp/deepdefend_uploads") UPLOAD_DIR.mkdir(parents=True, exist_ok=True) pipeline = None def get_pipeline(): global pipeline if pipeline is None: print("Loading DeepDefend Pipeline...") pipeline = DeepfakeDetectionPipeline() return pipeline class AnalysisResult(BaseModel): verdict: str confidence: float overall_scores: dict detailed_analysis: str suspicious_intervals: list total_intervals_analyzed: int video_info: dict analysis_id: str timestamp: str class HistoryItem(BaseModel): analysis_id: str filename: str verdict: str confidence: float timestamp: str video_duration: float class StatsResponse(BaseModel): total_analyses: int deepfakes_detected: int real_videos: int avg_confidence: float avg_video_score: float avg_audio_score: float class IntervalDetail(BaseModel): interval_id: int time_range: str video_score: float audio_score: float verdict: str suspicious_regions: dict def add_to_history(analysis_data: dict): """Add analysis to history""" history_item = { "analysis_id": analysis_data["analysis_id"], "filename": analysis_data["filename"], "verdict": analysis_data["verdict"], "confidence": analysis_data["confidence"], "timestamp": analysis_data["timestamp"], "video_duration": analysis_data["video_info"]["duration"], "overall_scores": analysis_data["overall_scores"] } analysis_history.insert(0, history_item) if len(analysis_history) > MAX_HISTORY: analysis_history.pop() @app.get("/") async def root(): return { "service": "DeepDefend API", "version": "1.0.0", "status": "online", "description": "Advanced Multi-Modal Deepfake Detection", "features": [ "Video frame-by-frame analysis", "Audio deepfake detection", "AI-powered evidence fusion", "Frame-level heatmap generation", "Interval breakdown analysis", "Analysis history tracking" ], "endpoints": { "analyze": "POST /api/analyze", "history": "GET /api/history", "stats": "GET /api/stats", "intervals": "GET /api/intervals/{analysis_id}", "compare": "GET /api/compare", "health": "GET /api/health" } } @app.get("/api/health") async def health(): """Health check with system info""" return { "status": "healthy", "pipeline_loaded": pipeline is not None, "total_analyses": len(analysis_history), "storage_used_mb": sum( f.stat().st_size for f in UPLOAD_DIR.glob('*') if f.is_file() ) / (1024 * 1024) if UPLOAD_DIR.exists() else 0, "timestamp": datetime.now().isoformat() } @app.post("/api/analyze", response_model=AnalysisResult) async def analyze_video( file: UploadFile = File(...), interval_duration: float = Query(default=2.0, ge=1.0, le=5.0) ): """ Upload and analyze video for deepfakes Returns complete analysis with: - Overall verdict and confidence - Video/audio scores - Suspicious intervals - AI-generated detailed analysis """ allowed_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.webm'] file_ext = os.path.splitext(file.filename)[1].lower() if file_ext not in allowed_extensions: raise HTTPException( status_code=400, detail=f"Invalid file type. Allowed: {', '.join(allowed_extensions)}" ) file.file.seek(0, 2) file_size = file.file.tell() file.file.seek(0) if file_size > 250 * 1024 * 1024: raise HTTPException(status_code=400, detail="File too large. Max: 250MB") if file_size < 100 * 1024: raise HTTPException(status_code=400, detail="File too small. Min: 100KB") analysis_id = str(uuid.uuid4()) video_path = UPLOAD_DIR / f"{analysis_id}{file_ext}" try: with open(video_path, "wb") as buffer: shutil.copyfileobj(file.file, buffer) pipe = get_pipeline() print(f"\nAnalyzing: {file.filename}") results = pipe.analyze_video(str(video_path), interval_duration) final_report = results['final_report'] video_info = results['video_info'] analysis_data = { "analysis_id": analysis_id, "filename": file.filename, "verdict": final_report['verdict'], "confidence": final_report['confidence'], "overall_scores": final_report['overall_scores'], "detailed_analysis": final_report['detailed_analysis'], "suspicious_intervals": final_report['suspicious_intervals'], "total_intervals_analyzed": final_report['total_intervals_analyzed'], "video_info": { "duration": video_info['duration'], "fps": video_info['fps'], "total_frames": video_info['total_frames'], "file_size_mb": round(file_size / (1024 * 1024), 2) }, "timestamp": datetime.now().isoformat() } add_to_history(analysis_data) interval_data = { 'analysis_id': analysis_id, 'timeline': [ { 'interval_id': interval['interval_id'], 'interval': interval['interval'], 'start': interval['start'], 'end': interval['end'], 'video_results': interval.get('video_results'), 'audio_results': interval.get('audio_results') } for interval in results.get('timeline', []) ] } results_path = UPLOAD_DIR / f"{analysis_id}_results.json" with open(results_path, 'w') as f: json.dump(interval_data, f, indent=2) return AnalysisResult(**analysis_data) except Exception as e: print(f"Error: {e}") raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}") finally: if video_path.exists(): os.remove(video_path) @app.get("/api/history", response_model=List[HistoryItem]) async def get_history(limit: int = Query(default=10, ge=1, le=50)): """Get recent analysis history""" return [ HistoryItem( analysis_id=item["analysis_id"], filename=item["filename"], verdict=item["verdict"], confidence=item["confidence"], timestamp=item["timestamp"], video_duration=item["video_duration"] ) for item in analysis_history[:limit] ] @app.get("/api/stats", response_model=StatsResponse) async def get_stats(): """Get overall statistics""" if not analysis_history: return StatsResponse( total_analyses=0, deepfakes_detected=0, real_videos=0, avg_confidence=0.0, avg_video_score=0.0, avg_audio_score=0.0 ) deepfakes = sum(1 for item in analysis_history if item["verdict"] == "DEEPFAKE") real = len(analysis_history) - deepfakes avg_confidence = sum(item["confidence"] for item in analysis_history) / len(analysis_history) avg_video = sum(item["overall_scores"]["overall_video_score"] for item in analysis_history) / len(analysis_history) avg_audio = sum(item["overall_scores"]["overall_audio_score"] for item in analysis_history) / len(analysis_history) return StatsResponse( total_analyses=len(analysis_history), deepfakes_detected=deepfakes, real_videos=real, avg_confidence=round(avg_confidence, 2), avg_video_score=round(avg_video, 3), avg_audio_score=round(avg_audio, 3) ) @app.get("/api/intervals/{analysis_id}") async def get_interval_details(analysis_id: str): """Get detailed interval-by-interval breakdown""" results_path = UPLOAD_DIR / f"{analysis_id}_results.json" if not results_path.exists(): raise HTTPException(status_code=404, detail="Analysis not found") with open(results_path, 'r') as f: interval_data = json.load(f) timeline = interval_data.get('timeline', []) intervals = [] for interval in timeline: video_res = interval.get('video_results', {}) audio_res = interval.get('audio_results', {}) avg_score = (video_res.get('fake_score', 0) + audio_res.get('fake_score', 0)) / 2 intervals.append({ "interval_id": interval['interval_id'], "time_range": interval['interval'], "start": interval['start'], "end": interval['end'], "video_score": video_res.get('fake_score', 0), "audio_score": audio_res.get('fake_score', 0), "combined_score": round(avg_score, 3), "verdict": "SUSPICIOUS" if avg_score > 0.6 else "NORMAL", "suspicious_regions": { "video": video_res.get('suspicious_regions', []), "audio": audio_res.get('suspicious_regions', []) }, "has_face": video_res.get('face_detected', False), "has_audio": audio_res.get('has_audio', False) }) return { "analysis_id": analysis_id, "total_intervals": len(intervals), "intervals": intervals } @app.get("/api/compare") async def compare_scores(): """Compare video vs audio detection rates""" if not analysis_history: return { "message": "No analysis data available", "comparison": None } video_higher = 0 audio_higher = 0 equal = 0 for item in analysis_history: scores = item["overall_scores"] v_score = scores["overall_video_score"] a_score = scores["overall_audio_score"] if v_score > a_score: video_higher += 1 elif a_score > v_score: audio_higher += 1 else: equal += 1 return { "total_analyses": len(analysis_history), "comparison": { "video_better_detection": video_higher, "audio_better_detection": audio_higher, "equal_detection": equal }, "percentages": { "video_dominant": round((video_higher / len(analysis_history)) * 100, 1), "audio_dominant": round((audio_higher / len(analysis_history)) * 100, 1), "balanced": round((equal / len(analysis_history)) * 100, 1) } } @app.get("/api/recent-verdict") async def get_recent_verdict_distribution(limit: int = Query(default=20, ge=5, le=50)): """Get verdict distribution for recent analyses""" recent = analysis_history[:limit] if not recent: return { "total": 0, "deepfakes": 0, "real": 0, "distribution": [] } deepfakes = sum(1 for item in recent if item["verdict"] == "DEEPFAKE") real = len(recent) - deepfakes distribution = { "very_confident": 0, "confident": 0, "moderate": 0, "low": 0 } for item in recent: conf = item["confidence"] if conf >= 80: distribution["very_confident"] += 1 elif conf >= 60: distribution["confident"] += 1 elif conf >= 40: distribution["moderate"] += 1 else: distribution["low"] += 1 return { "total": len(recent), "deepfakes": deepfakes, "real": real, "deepfake_rate": round((deepfakes / len(recent)) * 100, 1), "confidence_distribution": distribution } @app.delete("/api/clear-history") async def clear_history(): """Clear analysis history (for demo reset)""" global analysis_history count = len(analysis_history) analysis_history.clear() for file in UPLOAD_DIR.glob("*_results.json"): os.remove(file) return { "message": "History cleared", "items_removed": count } @app.exception_handler(HTTPException) async def http_exception_handler(request, exc): return JSONResponse( status_code=exc.status_code, content={"error": exc.detail, "status_code": exc.status_code} ) @app.exception_handler(Exception) async def global_exception_handler(request, exc): print(f"Error: {exc}") return JSONResponse( status_code=500, content={"error": "Internal server error", "detail": str(exc)} )