Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -90,9 +90,10 @@ model.eval()
|
|
| 90 |
|
| 91 |
detoxify_model = Detoxify('multilingual')
|
| 92 |
|
| 93 |
-
# Use a
|
| 94 |
print("Loading NSFW image classification model...")
|
| 95 |
-
|
|
|
|
| 96 |
print("NSFW image classification model loaded.")
|
| 97 |
|
| 98 |
MODERATION_SYSTEM_PROMPT = (
|
|
@@ -174,7 +175,7 @@ class ImageContent(BaseModel):
|
|
| 174 |
|
| 175 |
class ModerationRequest(BaseModel):
|
| 176 |
input: Union[str, List[Union[str, TextContent, ImageContent]]] = Field(..., description="Content to moderate")
|
| 177 |
-
model: Optional[str] = Field("
|
| 178 |
|
| 179 |
class ModerationResponse(BaseModel):
|
| 180 |
id: str
|
|
@@ -305,22 +306,27 @@ def classify_text_with_detoxify(text):
|
|
| 305 |
def classify_image(image_data):
|
| 306 |
try:
|
| 307 |
img = Image.open(io.BytesIO(image_data)).convert("RGB")
|
| 308 |
-
|
|
|
|
| 309 |
|
| 310 |
-
#
|
| 311 |
-
|
| 312 |
-
label = top_result['label']
|
| 313 |
-
score = top_result['score']
|
| 314 |
|
| 315 |
-
#
|
| 316 |
-
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
return {
|
| 320 |
"classification": classification,
|
| 321 |
"label": "NSFW" if classification == 'u' else "SFW",
|
| 322 |
"description": "Content may contain inappropriate or harmful material." if classification == 'u' else "Content appears to be safe and appropriate.",
|
| 323 |
-
"confidence":
|
| 324 |
"nsfw_score": nsfw_score
|
| 325 |
}
|
| 326 |
except Exception as e:
|
|
@@ -332,50 +338,85 @@ def classify_image(image_data):
|
|
| 332 |
"nsfw_score": 0.0
|
| 333 |
}
|
| 334 |
|
| 335 |
-
def process_content_item(item):
|
| 336 |
if isinstance(item, str):
|
| 337 |
-
|
| 338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
|
| 340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
"hate": flagged,
|
| 346 |
-
"hate/threatening": flagged,
|
| 347 |
-
"harassment": flagged,
|
| 348 |
-
"harassment/threatening": flagged,
|
| 349 |
-
"self-harm": flagged,
|
| 350 |
-
"self-harm/intent": flagged,
|
| 351 |
-
"self-harm/instructions": flagged,
|
| 352 |
-
"sexual": flagged,
|
| 353 |
-
"sexual/minors": flagged,
|
| 354 |
-
"violence": flagged,
|
| 355 |
-
"violence/graphic": flagged,
|
| 356 |
-
"nsfw": detoxify_result["categories"].get("sexual_explicit", False)
|
| 357 |
-
},
|
| 358 |
-
"category_scores": {
|
| 359 |
-
"hate": 0.9 if flagged else 0.1,
|
| 360 |
-
"hate/threatening": 0.9 if flagged else 0.1,
|
| 361 |
-
"harassment": 0.9 if flagged else 0.1,
|
| 362 |
-
"harassment/threatening": 0.9 if flagged else 0.1,
|
| 363 |
-
"self-harm": 0.9 if flagged else 0.1,
|
| 364 |
-
"self-harm/intent": 0.9 if flagged else 0.1,
|
| 365 |
-
"self-harm/instructions": 0.9 if flagged else 0.1,
|
| 366 |
-
"sexual": detoxify_result["category_scores"].get("sexual_explicit", 0.1),
|
| 367 |
-
"sexual/minors": detoxify_result["category_scores"].get("sexual_explicit", 0.1) * 0.9,
|
| 368 |
-
"violence": 0.9 if flagged else 0.1,
|
| 369 |
-
"violence/graphic": 0.9 if flagged else 0.1,
|
| 370 |
-
"nsfw": detoxify_result["category_scores"].get("sexual_explicit", 0.1)
|
| 371 |
-
},
|
| 372 |
-
"text": item
|
| 373 |
-
}
|
| 374 |
-
|
| 375 |
-
elif isinstance(item, dict):
|
| 376 |
-
if item.get("type") == "text":
|
| 377 |
-
gemma_result = classify_text_with_gemma(item.get("text", ""))
|
| 378 |
-
detoxify_result = classify_text_with_detoxify(item.get("text", ""))
|
| 379 |
|
| 380 |
flagged = gemma_result["classification"] == "u" or detoxify_result["flagged"]
|
| 381 |
|
|
@@ -409,8 +450,125 @@ def process_content_item(item):
|
|
| 409 |
"violence/graphic": 0.9 if flagged else 0.1,
|
| 410 |
"nsfw": detoxify_result["category_scores"].get("sexual_explicit", 0.1)
|
| 411 |
},
|
| 412 |
-
"text": item
|
| 413 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
|
| 415 |
elif item.get("type") == "image":
|
| 416 |
image_data = None
|
|
@@ -597,6 +755,7 @@ async def moderate_content(
|
|
| 597 |
|
| 598 |
try:
|
| 599 |
input_data = request.input
|
|
|
|
| 600 |
|
| 601 |
if isinstance(input_data, str):
|
| 602 |
items = [input_data]
|
|
@@ -616,14 +775,14 @@ async def moderate_content(
|
|
| 616 |
|
| 617 |
results = []
|
| 618 |
for item in items:
|
| 619 |
-
result = process_content_item(item)
|
| 620 |
results.append(result)
|
| 621 |
|
| 622 |
response_data = {
|
| 623 |
"id": f"modr_{uuid.uuid4().hex[:24]}",
|
| 624 |
"object": "moderation",
|
| 625 |
"created": int(time.time()),
|
| 626 |
-
"model":
|
| 627 |
"results": results
|
| 628 |
}
|
| 629 |
|
|
@@ -710,9 +869,11 @@ with open("templates/index.html", "w") as f:
|
|
| 710 |
</div>
|
| 711 |
</div>
|
| 712 |
<div class="mb-4">
|
| 713 |
-
<label class="block text-sm font-medium mb-2">Model</label>
|
| 714 |
-
<select id="
|
| 715 |
-
<option value="
|
|
|
|
|
|
|
| 716 |
</select>
|
| 717 |
</div>
|
| 718 |
<div class="mt-6">
|
|
@@ -957,6 +1118,7 @@ with open("templates/index.html", "w") as f:
|
|
| 957 |
const loadingModal = document.getElementById('loadingModal');
|
| 958 |
const mixedItemsContainer = document.getElementById('mixedItemsContainer');
|
| 959 |
const addItemBtn = document.getElementById('addItemBtn');
|
|
|
|
| 960 |
const exampleCards = document.querySelectorAll('.example-card');
|
| 961 |
|
| 962 |
textTab.addEventListener('click', () => {
|
|
@@ -1142,6 +1304,8 @@ with open("templates/index.html", "w") as f:
|
|
| 1142 |
return;
|
| 1143 |
}
|
| 1144 |
|
|
|
|
|
|
|
| 1145 |
showLoading(true);
|
| 1146 |
try {
|
| 1147 |
const response = await fetch('/v1/moderations', {
|
|
@@ -1152,7 +1316,7 @@ with open("templates/index.html", "w") as f:
|
|
| 1152 |
},
|
| 1153 |
body: JSON.stringify({
|
| 1154 |
input: text,
|
| 1155 |
-
model:
|
| 1156 |
})
|
| 1157 |
});
|
| 1158 |
|
|
@@ -1218,7 +1382,7 @@ with open("templates/index.html", "w") as f:
|
|
| 1218 |
},
|
| 1219 |
body: JSON.stringify({
|
| 1220 |
input: [imageInput],
|
| 1221 |
-
model:
|
| 1222 |
})
|
| 1223 |
});
|
| 1224 |
|
|
@@ -1304,7 +1468,7 @@ with open("templates/index.html", "w") as f:
|
|
| 1304 |
},
|
| 1305 |
body: JSON.stringify({
|
| 1306 |
input: inputItems,
|
| 1307 |
-
model:
|
| 1308 |
})
|
| 1309 |
});
|
| 1310 |
|
|
|
|
| 90 |
|
| 91 |
detoxify_model = Detoxify('multilingual')
|
| 92 |
|
| 93 |
+
# Use a more accurate NSFW image detection model
|
| 94 |
print("Loading NSFW image classification model...")
|
| 95 |
+
# Use a smaller, faster model for NSFW detection
|
| 96 |
+
nsfw_classifier = pipeline("image-classification", model="cafeai/nsfw-detector")
|
| 97 |
print("NSFW image classification model loaded.")
|
| 98 |
|
| 99 |
MODERATION_SYSTEM_PROMPT = (
|
|
|
|
| 175 |
|
| 176 |
class ModerationRequest(BaseModel):
|
| 177 |
input: Union[str, List[Union[str, TextContent, ImageContent]]] = Field(..., description="Content to moderate")
|
| 178 |
+
model: Optional[str] = Field("gemma", description="Model to use for text moderation (gemma, detoxify, both)")
|
| 179 |
|
| 180 |
class ModerationResponse(BaseModel):
|
| 181 |
id: str
|
|
|
|
| 306 |
def classify_image(image_data):
|
| 307 |
try:
|
| 308 |
img = Image.open(io.BytesIO(image_data)).convert("RGB")
|
| 309 |
+
# Resize for faster processing
|
| 310 |
+
img = img.resize((224, 224))
|
| 311 |
|
| 312 |
+
# Use the NSFW detector
|
| 313 |
+
results = nsfw_classifier(img)
|
|
|
|
|
|
|
| 314 |
|
| 315 |
+
# Extract the NSFW score
|
| 316 |
+
nsfw_score = 0.0
|
| 317 |
+
for result in results:
|
| 318 |
+
if result['label'].lower() == 'nsfw':
|
| 319 |
+
nsfw_score = result['score']
|
| 320 |
+
break
|
| 321 |
+
|
| 322 |
+
# Use a threshold of 0.7 for stricter detection
|
| 323 |
+
classification = 'u' if nsfw_score > 0.7 else 's'
|
| 324 |
|
| 325 |
return {
|
| 326 |
"classification": classification,
|
| 327 |
"label": "NSFW" if classification == 'u' else "SFW",
|
| 328 |
"description": "Content may contain inappropriate or harmful material." if classification == 'u' else "Content appears to be safe and appropriate.",
|
| 329 |
+
"confidence": nsfw_score,
|
| 330 |
"nsfw_score": nsfw_score
|
| 331 |
}
|
| 332 |
except Exception as e:
|
|
|
|
| 338 |
"nsfw_score": 0.0
|
| 339 |
}
|
| 340 |
|
| 341 |
+
def process_content_item(item, text_model="gemma"):
|
| 342 |
if isinstance(item, str):
|
| 343 |
+
if text_model == "gemma":
|
| 344 |
+
gemma_result = classify_text_with_gemma(item)
|
| 345 |
+
flagged = gemma_result["classification"] == "u"
|
| 346 |
+
|
| 347 |
+
return {
|
| 348 |
+
"flagged": flagged,
|
| 349 |
+
"categories": {
|
| 350 |
+
"hate": flagged,
|
| 351 |
+
"hate/threatening": flagged,
|
| 352 |
+
"harassment": flagged,
|
| 353 |
+
"harassment/threatening": flagged,
|
| 354 |
+
"self-harm": flagged,
|
| 355 |
+
"self-harm/intent": flagged,
|
| 356 |
+
"self-harm/instructions": flagged,
|
| 357 |
+
"sexual": flagged,
|
| 358 |
+
"sexual/minors": flagged,
|
| 359 |
+
"violence": flagged,
|
| 360 |
+
"violence/graphic": flagged,
|
| 361 |
+
"nsfw": False
|
| 362 |
+
},
|
| 363 |
+
"category_scores": {
|
| 364 |
+
"hate": 0.9 if flagged else 0.1,
|
| 365 |
+
"hate/threatening": 0.9 if flagged else 0.1,
|
| 366 |
+
"harassment": 0.9 if flagged else 0.1,
|
| 367 |
+
"harassment/threatening": 0.9 if flagged else 0.1,
|
| 368 |
+
"self-harm": 0.9 if flagged else 0.1,
|
| 369 |
+
"self-harm/intent": 0.9 if flagged else 0.1,
|
| 370 |
+
"self-harm/instructions": 0.9 if flagged else 0.1,
|
| 371 |
+
"sexual": 0.9 if flagged else 0.1,
|
| 372 |
+
"sexual/minors": 0.9 if flagged else 0.1,
|
| 373 |
+
"violence": 0.9 if flagged else 0.1,
|
| 374 |
+
"violence/graphic": 0.9 if flagged else 0.1,
|
| 375 |
+
"nsfw": 0.1
|
| 376 |
+
},
|
| 377 |
+
"text": item
|
| 378 |
+
}
|
| 379 |
|
| 380 |
+
elif text_model == "detoxify":
|
| 381 |
+
detoxify_result = classify_text_with_detoxify(item)
|
| 382 |
+
flagged = detoxify_result["flagged"]
|
| 383 |
+
|
| 384 |
+
return {
|
| 385 |
+
"flagged": flagged,
|
| 386 |
+
"categories": {
|
| 387 |
+
"hate": detoxify_result["categories"].get("toxicity", False),
|
| 388 |
+
"hate/threatening": detoxify_result["categories"].get("threat", False),
|
| 389 |
+
"harassment": detoxify_result["categories"].get("insult", False),
|
| 390 |
+
"harassment/threatening": detoxify_result["categories"].get("threat", False),
|
| 391 |
+
"self-harm": False,
|
| 392 |
+
"self-harm/intent": False,
|
| 393 |
+
"self-harm/instructions": False,
|
| 394 |
+
"sexual": detoxify_result["categories"].get("sexual_explicit", False),
|
| 395 |
+
"sexual/minors": detoxify_result["categories"].get("sexual_explicit", False),
|
| 396 |
+
"violence": detoxify_result["categories"].get("threat", False),
|
| 397 |
+
"violence/graphic": detoxify_result["categories"].get("threat", False),
|
| 398 |
+
"nsfw": detoxify_result["categories"].get("sexual_explicit", False)
|
| 399 |
+
},
|
| 400 |
+
"category_scores": {
|
| 401 |
+
"hate": detoxify_result["category_scores"].get("toxicity", 0.1),
|
| 402 |
+
"hate/threatening": detoxify_result["category_scores"].get("threat", 0.1),
|
| 403 |
+
"harassment": detoxify_result["category_scores"].get("insult", 0.1),
|
| 404 |
+
"harassment/threatening": detoxify_result["category_scores"].get("threat", 0.1),
|
| 405 |
+
"self-harm": 0.1,
|
| 406 |
+
"self-harm/intent": 0.1,
|
| 407 |
+
"self-harm/instructions": 0.1,
|
| 408 |
+
"sexual": detoxify_result["category_scores"].get("sexual_explicit", 0.1),
|
| 409 |
+
"sexual/minors": detoxify_result["category_scores"].get("sexual_explicit", 0.1) * 0.9,
|
| 410 |
+
"violence": detoxify_result["category_scores"].get("threat", 0.1),
|
| 411 |
+
"violence/graphic": detoxify_result["category_scores"].get("threat", 0.1),
|
| 412 |
+
"nsfw": detoxify_result["category_scores"].get("sexual_explicit", 0.1)
|
| 413 |
+
},
|
| 414 |
+
"text": item
|
| 415 |
+
}
|
| 416 |
|
| 417 |
+
elif text_model == "both":
|
| 418 |
+
gemma_result = classify_text_with_gemma(item)
|
| 419 |
+
detoxify_result = classify_text_with_detoxify(item)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
flagged = gemma_result["classification"] == "u" or detoxify_result["flagged"]
|
| 422 |
|
|
|
|
| 450 |
"violence/graphic": 0.9 if flagged else 0.1,
|
| 451 |
"nsfw": detoxify_result["category_scores"].get("sexual_explicit", 0.1)
|
| 452 |
},
|
| 453 |
+
"text": item
|
| 454 |
}
|
| 455 |
+
|
| 456 |
+
elif isinstance(item, dict):
|
| 457 |
+
if item.get("type") == "text":
|
| 458 |
+
text = item.get("text", "")
|
| 459 |
+
|
| 460 |
+
if text_model == "gemma":
|
| 461 |
+
gemma_result = classify_text_with_gemma(text)
|
| 462 |
+
flagged = gemma_result["classification"] == "u"
|
| 463 |
+
|
| 464 |
+
return {
|
| 465 |
+
"flagged": flagged,
|
| 466 |
+
"categories": {
|
| 467 |
+
"hate": flagged,
|
| 468 |
+
"hate/threatening": flagged,
|
| 469 |
+
"harassment": flagged,
|
| 470 |
+
"harassment/threatening": flagged,
|
| 471 |
+
"self-harm": flagged,
|
| 472 |
+
"self-harm/intent": flagged,
|
| 473 |
+
"self-harm/instructions": flagged,
|
| 474 |
+
"sexual": flagged,
|
| 475 |
+
"sexual/minors": flagged,
|
| 476 |
+
"violence": flagged,
|
| 477 |
+
"violence/graphic": flagged,
|
| 478 |
+
"nsfw": False
|
| 479 |
+
},
|
| 480 |
+
"category_scores": {
|
| 481 |
+
"hate": 0.9 if flagged else 0.1,
|
| 482 |
+
"hate/threatening": 0.9 if flagged else 0.1,
|
| 483 |
+
"harassment": 0.9 if flagged else 0.1,
|
| 484 |
+
"harassment/threatening": 0.9 if flagged else 0.1,
|
| 485 |
+
"self-harm": 0.9 if flagged else 0.1,
|
| 486 |
+
"self-harm/intent": 0.9 if flagged else 0.1,
|
| 487 |
+
"self-harm/instructions": 0.9 if flagged else 0.1,
|
| 488 |
+
"sexual": 0.9 if flagged else 0.1,
|
| 489 |
+
"sexual/minors": 0.9 if flagged else 0.1,
|
| 490 |
+
"violence": 0.9 if flagged else 0.1,
|
| 491 |
+
"violence/graphic": 0.9 if flagged else 0.1,
|
| 492 |
+
"nsfw": 0.1
|
| 493 |
+
},
|
| 494 |
+
"text": text
|
| 495 |
+
}
|
| 496 |
+
|
| 497 |
+
elif text_model == "detoxify":
|
| 498 |
+
detoxify_result = classify_text_with_detoxify(text)
|
| 499 |
+
flagged = detoxify_result["flagged"]
|
| 500 |
+
|
| 501 |
+
return {
|
| 502 |
+
"flagged": flagged,
|
| 503 |
+
"categories": {
|
| 504 |
+
"hate": detoxify_result["categories"].get("toxicity", False),
|
| 505 |
+
"hate/threatening": detoxify_result["categories"].get("threat", False),
|
| 506 |
+
"harassment": detoxify_result["categories"].get("insult", False),
|
| 507 |
+
"harassment/threatening": detoxify_result["categories"].get("threat", False),
|
| 508 |
+
"self-harm": False,
|
| 509 |
+
"self-harm/intent": False,
|
| 510 |
+
"self-harm/instructions": False,
|
| 511 |
+
"sexual": detoxify_result["categories"].get("sexual_explicit", False),
|
| 512 |
+
"sexual/minors": detoxify_result["categories"].get("sexual_explicit", False),
|
| 513 |
+
"violence": detoxify_result["categories"].get("threat", False),
|
| 514 |
+
"violence/graphic": detoxify_result["categories"].get("threat", False),
|
| 515 |
+
"nsfw": detoxify_result["categories"].get("sexual_explicit", False)
|
| 516 |
+
},
|
| 517 |
+
"category_scores": {
|
| 518 |
+
"hate": detoxify_result["category_scores"].get("toxicity", 0.1),
|
| 519 |
+
"hate/threatening": detoxify_result["category_scores"].get("threat", 0.1),
|
| 520 |
+
"harassment": detoxify_result["category_scores"].get("insult", 0.1),
|
| 521 |
+
"harassment/threatening": detoxify_result["category_scores"].get("threat", 0.1),
|
| 522 |
+
"self-harm": 0.1,
|
| 523 |
+
"self-harm/intent": 0.1,
|
| 524 |
+
"self-harm/instructions": 0.1,
|
| 525 |
+
"sexual": detoxify_result["category_scores"].get("sexual_explicit", 0.1),
|
| 526 |
+
"sexual/minors": detoxify_result["category_scores"].get("sexual_explicit", 0.1) * 0.9,
|
| 527 |
+
"violence": detoxify_result["category_scores"].get("threat", 0.1),
|
| 528 |
+
"violence/graphic": detoxify_result["category_scores"].get("threat", 0.1),
|
| 529 |
+
"nsfw": detoxify_result["category_scores"].get("sexual_explicit", 0.1)
|
| 530 |
+
},
|
| 531 |
+
"text": text
|
| 532 |
+
}
|
| 533 |
+
|
| 534 |
+
elif text_model == "both":
|
| 535 |
+
gemma_result = classify_text_with_gemma(text)
|
| 536 |
+
detoxify_result = classify_text_with_detoxify(text)
|
| 537 |
+
|
| 538 |
+
flagged = gemma_result["classification"] == "u" or detoxify_result["flagged"]
|
| 539 |
+
|
| 540 |
+
return {
|
| 541 |
+
"flagged": flagged,
|
| 542 |
+
"categories": {
|
| 543 |
+
"hate": flagged,
|
| 544 |
+
"hate/threatening": flagged,
|
| 545 |
+
"harassment": flagged,
|
| 546 |
+
"harassment/threatening": flagged,
|
| 547 |
+
"self-harm": flagged,
|
| 548 |
+
"self-harm/intent": flagged,
|
| 549 |
+
"self-harm/instructions": flagged,
|
| 550 |
+
"sexual": flagged,
|
| 551 |
+
"sexual/minors": flagged,
|
| 552 |
+
"violence": flagged,
|
| 553 |
+
"violence/graphic": flagged,
|
| 554 |
+
"nsfw": detoxify_result["categories"].get("sexual_explicit", False)
|
| 555 |
+
},
|
| 556 |
+
"category_scores": {
|
| 557 |
+
"hate": 0.9 if flagged else 0.1,
|
| 558 |
+
"hate/threatening": 0.9 if flagged else 0.1,
|
| 559 |
+
"harassment": 0.9 if flagged else 0.1,
|
| 560 |
+
"harassment/threatening": 0.9 if flagged else 0.1,
|
| 561 |
+
"self-harm": 0.9 if flagged else 0.1,
|
| 562 |
+
"self-harm/intent": 0.9 if flagged else 0.1,
|
| 563 |
+
"self-harm/instructions": 0.9 if flagged else 0.1,
|
| 564 |
+
"sexual": detoxify_result["category_scores"].get("sexual_explicit", 0.1),
|
| 565 |
+
"sexual/minors": detoxify_result["category_scores"].get("sexual_explicit", 0.1) * 0.9,
|
| 566 |
+
"violence": 0.9 if flagged else 0.1,
|
| 567 |
+
"violence/graphic": 0.9 if flagged else 0.1,
|
| 568 |
+
"nsfw": detoxify_result["category_scores"].get("sexual_explicit", 0.1)
|
| 569 |
+
},
|
| 570 |
+
"text": text
|
| 571 |
+
}
|
| 572 |
|
| 573 |
elif item.get("type") == "image":
|
| 574 |
image_data = None
|
|
|
|
| 755 |
|
| 756 |
try:
|
| 757 |
input_data = request.input
|
| 758 |
+
text_model = request.model or "gemma"
|
| 759 |
|
| 760 |
if isinstance(input_data, str):
|
| 761 |
items = [input_data]
|
|
|
|
| 775 |
|
| 776 |
results = []
|
| 777 |
for item in items:
|
| 778 |
+
result = process_content_item(item, text_model)
|
| 779 |
results.append(result)
|
| 780 |
|
| 781 |
response_data = {
|
| 782 |
"id": f"modr_{uuid.uuid4().hex[:24]}",
|
| 783 |
"object": "moderation",
|
| 784 |
"created": int(time.time()),
|
| 785 |
+
"model": text_model,
|
| 786 |
"results": results
|
| 787 |
}
|
| 788 |
|
|
|
|
| 869 |
</div>
|
| 870 |
</div>
|
| 871 |
<div class="mb-4">
|
| 872 |
+
<label class="block text-sm font-medium mb-2">Text Model</label>
|
| 873 |
+
<select id="textModelSelect" class="w-full px-4 py-3 rounded-lg bg-white/10 border border-white/20 focus:outline-none focus:ring-2 focus:ring-indigo-400 text-white">
|
| 874 |
+
<option value="gemma">Gemma (Fast)</option>
|
| 875 |
+
<option value="detoxify">Detoxify (Detailed)</option>
|
| 876 |
+
<option value="both">Both (Most Accurate)</option>
|
| 877 |
</select>
|
| 878 |
</div>
|
| 879 |
<div class="mt-6">
|
|
|
|
| 1118 |
const loadingModal = document.getElementById('loadingModal');
|
| 1119 |
const mixedItemsContainer = document.getElementById('mixedItemsContainer');
|
| 1120 |
const addItemBtn = document.getElementById('addItemBtn');
|
| 1121 |
+
const textModelSelect = document.getElementById('textModelSelect');
|
| 1122 |
const exampleCards = document.querySelectorAll('.example-card');
|
| 1123 |
|
| 1124 |
textTab.addEventListener('click', () => {
|
|
|
|
| 1304 |
return;
|
| 1305 |
}
|
| 1306 |
|
| 1307 |
+
const textModel = textModelSelect.value;
|
| 1308 |
+
|
| 1309 |
showLoading(true);
|
| 1310 |
try {
|
| 1311 |
const response = await fetch('/v1/moderations', {
|
|
|
|
| 1316 |
},
|
| 1317 |
body: JSON.stringify({
|
| 1318 |
input: text,
|
| 1319 |
+
model: textModel
|
| 1320 |
})
|
| 1321 |
});
|
| 1322 |
|
|
|
|
| 1382 |
},
|
| 1383 |
body: JSON.stringify({
|
| 1384 |
input: [imageInput],
|
| 1385 |
+
model: textModelSelect.value
|
| 1386 |
})
|
| 1387 |
});
|
| 1388 |
|
|
|
|
| 1468 |
},
|
| 1469 |
body: JSON.stringify({
|
| 1470 |
input: inputItems,
|
| 1471 |
+
model: textModelSelect.value
|
| 1472 |
})
|
| 1473 |
});
|
| 1474 |
|